High-Speed Boundary-Layer Instability: Old Terminology and a New Framework

AIAA Journal ◽  
2011 ◽  
Vol 49 (8) ◽  
pp. 1647-1657 ◽  
Author(s):  
Alexander Fedorov ◽  
Anatoli Tumin
2022 ◽  
Author(s):  
Samantha A. Miller ◽  
Derek Mamrol ◽  
Joel J. Redmond ◽  
Karl Jantze ◽  
Carlo Scalo ◽  
...  

TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


2021 ◽  
Vol 910 ◽  
Author(s):  
Sumit Tambe ◽  
Ferry Schrijer ◽  
Arvind Gangoli Rao ◽  
Leo Veldhuis

Abstract


2021 ◽  
Vol 33 (2) ◽  
pp. 024108
Author(s):  
Jianqiang Chen ◽  
Siwei Dong ◽  
Xi Chen ◽  
Xianxu Yuan ◽  
Guoliang Xu

2018 ◽  
Vol 857 ◽  
pp. 952-952
Author(s):  
Natacha Nguyen van yen ◽  
Matthias Waidmann ◽  
Rupert Klein ◽  
Marie Farge ◽  
Kai Schneider

Sign in / Sign up

Export Citation Format

Share Document