Numerical Study on Thermodynamic Efficiency and Stability of Oblique Detonation Waves

AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 3112-3122 ◽  
Author(s):  
Shikun Miao ◽  
Jin Zhou ◽  
Zhiyong Lin ◽  
Xiaodong Cai ◽  
Shijie Liu
Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
J. Hunter Mack

Natural gas is traditionally considered as a promising fuel in comparison to gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison to pre-mixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center and enables the compression ignition of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon has been investigated using a three-dimensional transient model of a constant volume combustion chamber. A dynamic structure large eddy simulation model has been utilized to capture the behavior of the non-premixed turbulent gaseous jet. A reduced mechanism consists of 22-species and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.


Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
J. Hunter Mack

Natural gas is traditionally considered as a promising fuel in comparison with gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison with premixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center (TDC) and enables the compression ignition (CI) of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon have been investigated using a three-dimensional transient model of a constant volume combustion chamber (CVCC). A dynamic structure large eddy simulation (LES) model has been utilized to capture the behavior of the nonpremixed turbulent gaseous jet. A reduced mechanism consists of 22-species, and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.


2016 ◽  
Vol 61 (22) ◽  
pp. 1756-1765 ◽  
Author(s):  
Tai Jin ◽  
Kun Luo ◽  
Qi Dai ◽  
Jianren Fan

2013 ◽  
Vol 49 (4) ◽  
pp. 418-423
Author(s):  
A. G. Kutushev ◽  
V. F. Burnashev ◽  
U. A. Nazarov

Sign in / Sign up

Export Citation Format

Share Document