A Computational Investigation of Non-Premixed Combustion of Natural Gas Injected Into Mixture of Argon and Oxygen

Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
J. Hunter Mack

Natural gas is traditionally considered as a promising fuel in comparison to gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison to pre-mixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center and enables the compression ignition of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon has been investigated using a three-dimensional transient model of a constant volume combustion chamber. A dynamic structure large eddy simulation model has been utilized to capture the behavior of the non-premixed turbulent gaseous jet. A reduced mechanism consists of 22-species and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.

2018 ◽  
Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
John Hunter Mack

Natural gas is traditionally considered as a promising fuel in comparison to gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison to pre-mixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center and enables the compression ignition of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon has been investigated using a three-dimensional transient model of a constant volume combustion chamber. A dynamic structure large eddy simulation model has been utilized to capture the behavior of the non-premixed turbulent gaseous jet. A reduced mechanism consists of 22-species and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.


Author(s):  
Martia Shahsavan ◽  
Mohammadrasool Morovatiyan ◽  
J. Hunter Mack

Natural gas is traditionally considered as a promising fuel in comparison with gasoline due to the potential of lower emissions and significant domestic reserves. These emissions can be further diminished by using noble gases, such as argon, instead of nitrogen as the working fluid in internal combustion engines. Furthermore, the use of argon as the working fluid can increase the thermodynamic efficiency due to its higher specific heat ratio. In comparison with premixed operation, the direct injection of natural gas enables the engine to reach higher compression ratios while avoiding knock. Using argon as the working fluid increases the in-cylinder temperature at top dead center (TDC) and enables the compression ignition (CI) of natural gas. In this numerical study, the combustion quality and ignition behavior of methane injected into a mixture of oxygen and argon have been investigated using a three-dimensional transient model of a constant volume combustion chamber (CVCC). A dynamic structure large eddy simulation (LES) model has been utilized to capture the behavior of the nonpremixed turbulent gaseous jet. A reduced mechanism consists of 22-species, and 104-reactions were coupled with the CFD solver. The simulation results show that the methane jet ignites at engine-relevant conditions when nitrogen is replaced by argon as the working fluid. Ignition delay times are compared across a variety of operating conditions to show how mixing affects jet development and flame characteristics.


Author(s):  
Elizaveta Ivanova ◽  
Berthold Noll ◽  
Peter Griebel ◽  
Manfred Aigner ◽  
Khawar Syed

Turbulent mixing and autoignition of H2-rich fuels at relevant reheat combustor operating conditions are investigated in the present numerical study. The flow configuration under consideration is a fuel jet perpendicularly injected into a crossflow of hot flue gas (T > 1000K, p = 15bar). Based on the results of the experimental study for the same flow configuration and operating conditions two different fuel blends are chosen for the numerical simulations. The first fuel blend is a H2/natural gas/N2 mixture at which no autoignition events were observed in the experiments. The second fuel blend is a H2/N2 mixture at which autoignition in the mixing section occurred. First, the non-reacting flow simulations are performed for the H2/natural gas/N2 mixture in order to compare the accuracy of different turbulence modeling methods. Here the steady-state Reynolds-averaged Navier-Stokes (RANS) as well as the unsteady scale-adaptive simulation (SAS) turbulence modeling methods are applied. The velocity fields obtained in both simulations are directly validated against experimental data. The SAS method shows better agreement with the experimental results. In the second part of the present work the autoignition of the H2/N2 mixture is numerically studied using the 9-species 21-steps reaction mechanism of O’Conaire et al. [1]. As in the reference experiments, autoignition can be observed in the simulations. Influences of the turbulence modeling as well as of the hot flue gas temperature are investigated. The onset and the propagation of the ignition kernels are studied based on the SAS modeling results. The obtained numerical results are discussed and compared with data from experimental autoignition studies.


2019 ◽  
Vol 21 (8) ◽  
pp. 1493-1519
Author(s):  
Abhishek Y Deshmukh ◽  
Carsten Giefer ◽  
Dominik Goeb ◽  
Maziar Khosravi ◽  
David van Bebber ◽  
...  

Direct injection of compressed natural gas in internal combustion engines is a promising technology to achieve high indicated thermal efficiency and, at the same time, reduce harmful exhaust gas emissions using relatively low-cost fuel. However, the design and analysis of direct injection–compressed natural gas systems are challenging due to small injector geometries and high-speed gas flows including shocks and discontinuities. The injector design typically involves either a multi-hole configuration with inwardly opening needle or an outwardly opening poppet-type valve with small geometries, which make accessing the near-nozzle-flow field difficult in experiments. Therefore, predictive simulations can be helpful in the design and development processes. Simulations of the gas injection process are, however, computationally very expensive, as gas passages of the order of micrometers combined with a high Mach number compressible gas flow result in very small simulation time steps of the order of nanoseconds, increasing the overall computational wall time. With substantial differences between in-nozzle and in-cylinder length and velocity scales, simultaneous simulation of both regions becomes computationally expensive. Therefore, in this work, a quasi-one-dimensional nozzle-flow model for an outwardly opening poppet-type injector is developed. The model is validated by comparison with high-fidelity large-eddy simulation results for different nozzle pressure ratios. The quasi-one-dimensional nozzle-flow model is dynamically coupled to a three-dimensional flow solver through source terms in the governing equations, named as dynamically coupled source model. The dynamically coupled source model is then applied to a temporal gas jet evolution case and a cold flow engine case. The results show that the dynamically coupled source model can reasonably predict the gas jet behavior in both cases. All simulations using the new model led to reductions of computational wall time by a factor of 5 or higher.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Nikhil Sharma ◽  
Avinash Kumar Agarwal

Abstract Fuel availability, global warming, and energy security are the three main driving forces, which determine suitability and long-term implementation potential of a renewable fuel for internal combustion engines for a variety of applications. Comprehensive engine experiments were conducted in a single-cylinder gasoline direct injection (GDI) engine prototype having a compression ratio of 10.5, for gaining insights into application of mixtures of gasoline and primary alcohols. Performance, emissions, combustion, and particulate characteristics were determined at different engine speeds (1500, 2000, 2500, 3000 rpm), different fuel injection pressures (FIP: 40, 80, 120, 160 bars) and different test fuel blends namely 15% (v/v) butanol, ethanol, and methanol blended with gasoline, respectively (Bu15, E15, and M15) and baseline gasoline at a fixed (optimum) spark timing of 24 deg before top dead center (bTDC). For a majority of operating conditions, gasohols exhibited superior characteristics except minor engine performance penalty. Gasohols therefore emerged as serious candidate as a transitional renewable fuel for utilization in the existing GDI engines, without requirement of any major hardware changes.


Author(s):  
Lorenzo Gasbarro ◽  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu ◽  
Luca Ambrogi ◽  
...  

Abstract Investigations using laboratory test benches are the most common way to find the technological solutions that will increase the efficiency of internal combustion engines and curtail their emissions. In addition, the collected experimental data are used by the CFD community to develop engine models that reduce the time-to-market. This paper describes the steps made to increase the reliability of engine experiments performed in a heavy-duty natural-gas spark-ignition engine test-cell such as the design of the control and data acquisition system based on Modbus TCP communication protocol. Specifically, new sensors and a new dynamometer controller were installed. The operation of the improved test bench was investigated at several operating conditions, with data obtained at both high- and low-sampling rates. The results indicated a stable test bench operation.


Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


2014 ◽  
Vol 18 (1) ◽  
pp. 39-52
Author(s):  
Bijan Yadollahi ◽  
Masoud Boroomand

In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Kaushik Saha ◽  
Sibendu Som ◽  
Michele Battistoni ◽  
Yanheng Li ◽  
Shaoping Quan ◽  
...  

A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multihole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the engine combustion network (ECN). Simulations have been carried out for a fixed needle lift. The effects of turbulence, compressibility, and noncondensable gases have been considered in this work. Standard k–ε turbulence model has been used to model the turbulence. Homogeneous relaxation model (HRM) coupled with volume of fluid (VOF) approach has been utilized to capture the phase-change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine nonflashing and evaporative, nonflashing and nonevaporative, and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitationlike and in the near-nozzle region flash-boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions, considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, formed by the flash boiling of superheated liquid fuel. Large outlet domain connecting the exits of the holes and the pressure outlet boundary appeared to be necessary leading to substantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions.


Sign in / Sign up

Export Citation Format

Share Document