Numerical study of the reflection of detonation waves from a wedge

1999 ◽  
Vol 35 (6) ◽  
pp. 690-697 ◽  
Author(s):  
A. V. Trotsyuk
Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


Author(s):  
V. A. SABELNIKOV ◽  
◽  
V. V. VLASENKO ◽  
S. BAKHNE ◽  
S. S. MOLEV ◽  
...  

Gasdynamics of detonation waves was widely studied within last hundred years - analytically, experimentally, and numerically. The majority of classical studies of the XX century were concentrated on inviscid aspects of detonation structure and propagation. There was a widespread opinion that detonation is such a fast phenomenon that viscous e¨ects should have insigni¦cant in§uence on its propagation. When the era of calculations based on the Reynolds-averaged Navier- Stokes (RANS) and large eddy simulation approaches came into effect, researchers pounced on practical problems with complex geometry and with the interaction of many physical effects. There is only a limited number of works studying the in§uence of viscosity on detonation propagation in supersonic §ows in ducts (i. e., in the presence of boundary layers).


2016 ◽  
Vol 61 (22) ◽  
pp. 1756-1765 ◽  
Author(s):  
Tai Jin ◽  
Kun Luo ◽  
Qi Dai ◽  
Jianren Fan

2013 ◽  
Vol 49 (4) ◽  
pp. 418-423
Author(s):  
A. G. Kutushev ◽  
V. F. Burnashev ◽  
U. A. Nazarov

AIAA Journal ◽  
2018 ◽  
Vol 56 (8) ◽  
pp. 3112-3122 ◽  
Author(s):  
Shikun Miao ◽  
Jin Zhou ◽  
Zhiyong Lin ◽  
Xiaodong Cai ◽  
Shijie Liu

1999 ◽  
Author(s):  
Balu Sekar ◽  
Sampath Palaniswamy ◽  
Ryan Pfeiffer

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Alexander Lopato ◽  
Pavel Utkin

The work is dedicated to the numerical study of detonation wave initiation and propagation in the variable cross-section axisymmetric channel filled with the model hydrogen-air mixture. The channel models the large-scale device for the utilization of worn-out tires. Mathematical model is based on two-dimensional axisymmetric Euler equations supplemented by global chemical kinetics model. The finite volume computational algorithm of the second approximation order for the calculation of two-dimensional flows with detonation waves on fully unstructured grids with triangular cells is developed. Three geometrical configurations of the channel are investigated, each with its own degree of the divergence of the conical part of the channel from the point of view of the pressure from the detonation wave on the end wall of the channel. The problem in consideration relates to the problem of waste recycling in the devices based on the detonation combustion of the fuel.


Sign in / Sign up

Export Citation Format

Share Document