Full-Span Topology of Trailing-Edge Separation at Different Angles of Attack

AIAA Journal ◽  
2021 ◽  
pp. 1-12
Author(s):  
Sen Wang ◽  
Sina Ghaemi

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Alvaro Gonzalez ◽  
Xabier Munduate

This work undertakes an aerodynamic analysis over the parked and the rotating NREL Phase VI wind turbine blade. The experimental sequences from NASA Ames wind tunnel selected for this study respond to the parked blade and the rotating configuration, both for the upwind, two-bladed wind turbine operating at nonyawed conditions. The objective is to bring some light into the nature of the flow field and especially the type of stall behavior observed when 2D aerofoil steady measurements are compared to the parked blade and the latter to the rotating one. From averaged pressure coefficients together with their standard deviation values, trailing and leading edge separated flow regions have been found, with the limitations of the repeatability of the flow encountered on the blade. Results for the parked blade show the progressive delay from tip to root of the trailing edge separation process, with respect to the 2D profile, and also reveal a local region of leading edge separated flow or bubble at the inner, 30% and 47% of the blade. For the rotating blade, results at inboard 30% and 47% stations show a dramatic suppression of the trailing edge separation, and the development of a leading edge separation structure connected with the extra lift.



2013 ◽  
Vol 444-445 ◽  
pp. 374-379 ◽  
Author(s):  
Lei Qiao ◽  
Jun Qiang Bai ◽  
Jun Hua ◽  
Chen Wang

The present article describes the combination of the correlation based transition model of Menter et al. with the Detached Eddy Simulation (DES) and Delayed Detached Eddy Simulation (DDES) methodology. The interaction between transition model and DES or DDES method was investigated by T3A test case. The grid sensitivity of the combined methodology is discussed and the resolution is given. Then, the simulation of flow over foil of medium thick at stall angle was performed. The combined methodology produce results that have better agreement with experiment comparing to RANS transition model or fully turbulent DES/DDES alone. And the DDES based combined model shows a better agreement with experiment in the simulation of trailing edge separation comparing to DES based combined model.



Author(s):  
Shreyas Narsipur ◽  
Ashok Gopalarathnam ◽  
Jack R. Edwards


2004 ◽  
Vol 108 (1086) ◽  
pp. 419-425 ◽  
Author(s):  
P. R. Viswanath ◽  
K. T. Madhavan

Abstract Experiments have been performed investigating the effectiveness of steady tangential blowing, with the blowing slot located downstream of separation (but inside the separation bubble) to control a trailing-edge separated flow at low speeds. Trailing-edge separation was induced on a two-dimensional aerofoil-like body and the shear layer closure occurred in the near-wake. Measurements made consisted of model surface pressures and mean velocity, turbulent shear stress and kinetic energy profiles in the separated zone using a two-component LDV system. It is explicitly demonstrated that the novel concept of tangential blowing inside the bubble can be an effective means of control for trailing-edge separated flows as well. Blowing mass and momentum requirements for the suppression of wall and wake flow reversals have been estimated.



Author(s):  
Benedikt Koenig ◽  
Ehab Fares ◽  
Avinash Jammalamadaka ◽  
Yanbing Li


1994 ◽  
Author(s):  
Koji Miyaji ◽  
Kozo Fujii ◽  
Keiichi Karashima


1995 ◽  
Vol 117 (1) ◽  
pp. 45-49 ◽  
Author(s):  
C. P. Gendrich ◽  
M. M. Koochesfahani ◽  
M. R. Visbal

Computational results are presented to show how the acceleration period at the start of nominally constant pitch rate trajectories affects the dynamic stall process. Large amplitude motions of an NACA 0012 airfoil pitching about the quarter-chord axis were studied using constant (ON/OFF) acceleration profiles with nondimensional acceleration periods ranging between 0.039 to 0.6, and large pitch rates (0.1 ≤ Ω* ≡ α˙ c/2U∞≤0.4). The initial acceleration is observed to affect the integrated loads, surface pressure distribution, and the evolution of reversed flow regions just above the surface of the airfoil only during the acceleration period and for a relatively short time δτ ≤ 0.25 afterwards; τ≡ tU∞/c. After that time, all of these quantities only depend on the instantaneous angle of attack for a given pitch rate. These results are consistent with and explain previous experimental flow visualization observations. The onset of leading edge separation at high and low pitch rates is shown to be characterized by different processes. At low pitch rates leading edge separation occurs after the reversed flow front originating at the trailing edge has reached the leading edge. At higher pitch rates leading edge separation and the upstream progression of the (trailing edge) reversed flow front develop independently.



AIAA Journal ◽  
1983 ◽  
Vol 21 (11) ◽  
pp. 1525-1532 ◽  
Author(s):  
C. M. Rhie ◽  
W. L. Chow


Sign in / Sign up

Export Citation Format

Share Document