NUMERICAL SOLUTION OF THE PROBLEM OF SUPERSONIC FLOW PAST THE LOWER SURFACE OF A DELTA WING

AIAA Journal ◽  
1963 ◽  
Vol 1 (9) ◽  
pp. 2224-2231 ◽  
Author(s):  
D. A. BABAEV
1956 ◽  
Vol 1 (3) ◽  
pp. 290-318 ◽  
Author(s):  
G. B. Whitham

A method is presented for treating problems of the propagation and ultimate decay of the shocks produced by explosions and by bodies in supersonic flight. The theory is restricted to weak shocks, but is of quite general application within that limitation. In the author's earlier work on this subject (Whitham 1952), only problems having directional symmetry were considered; thus, steady supersonic flow past an axisymmetrical body was a typical example. The present paper extends the method to problems lacking such symmetry. The main step required in the extension is described in the introduction and the general theory is completed in §2; the remainder of the paper is devoted to applications of the theory in specific cases.First, in §3, the problem of the outward propagation of spherical shocks is reconsidered since it provides the simplest illustration of the ideas developed in §2. Then, in §4, the theory is applied to a model of an unsymmetrical explosion. In §5, a brief outline is given of the theory developed by Rao (1956) for the application to a supersonic projectile moving with varying speed and direction. Examples of steady supersonic flow past unsymmetrical bodies are discussed in §6 and 7. The first is the flow past a flat plate delta wing at small incidence to the stream, with leading edges swept inside the Mach cone; the results agree with those previously found by Lighthill (1949) in his work on shocks in cone field problems, and this provides a valuable check on the theory. The second application in steady supersonic flow is to the problem of a thin wing having a finite curved leading edge. It is found that in any given direction the shock from the leading edge ultimately decays exactly as for the bow shock on a body of revolution; the equivalent body of revolution for any direction is determined in terms of the thickness distribution of the wing and varies with the direction chosen. Finally in §8, the wave drag on the wing is calculated from the rate of dissipation of energy by the shocks. The drag is found to be the mean of the drags on the equivalent bodies of revolution for the different directions.


2013 ◽  
Vol 390 ◽  
pp. 147-151
Author(s):  
Saif Akram ◽  
Nadeem Hasan ◽  
Aqib Khan

A numerical investigation of two-dimensional unsteady, viscous and laminar compressible flow past an asymmetric biconvex circular-arc aerofoil in supersonic regime is carried out. The focus of the present work is to investigate the effects of variation of Mach number, at two different angles of attack, on the flow and force characteristics on NACA 2S-(50)(04)-(50)(20) aerofoil. The value of Reynolds number is taken as 5x105. The computations are carried out at Mach numbers of 1.25, 1.5 and 2.0 at an angle of attack of α=0° and α=10°. It is found that the aerofoil works well in the supersonic flow and, unlike the conventional symmetric biconvex aerofoil, generates finite lift at α=0° due to stronger shock waves at the lower surface. Moreover, the L/D ratio at α=10° is always found to be more than 2.5.


2015 ◽  
Vol 47 (1) ◽  
pp. 80-126 ◽  
Author(s):  
Shuxing Chen ◽  
Chao Yi

1976 ◽  
Vol 27 (2) ◽  
pp. 143-153 ◽  
Author(s):  
I C Richards

SummaryA detailed survey of a delta wing of 70° sweep has been performed at M = 2.5. The measurements include upper- and lower-surface pressure distributions, schlieren photographs, vapour-screen photographs and surface oil-flow visualisation. The results have been compared with thin-shock-layer theory and various other predictions.


1950 ◽  
Vol 1 (4) ◽  
pp. 305-318
Author(s):  
G. N. Ward

SummaryThe approximate supersonic flow past a slender ducted body of revolution having an annular intake is determined by using the Heaviside operational calculus applied to the linearised equation for the velocity potential. It is assumed that the external and internal flows are independent. The pressures on the body are integrated to find the drag, lift and moment coefficients of the external forces. The lift and moment coefficients have the same values as for a slender body of revolution without an intake, but the formula for the drag has extra terms given in equations (32) and (56). Under extra assumptions, the lift force due to the internal pressures is estimated. The results are applicable to propulsive ducts working under the specified condition of no “ spill-over “ at the intake.


Sign in / Sign up

Export Citation Format

Share Document