scholarly journals Effect of tip vortex structure on helicopter noise due to blade-vortex interaction

1980 ◽  
Vol 17 (10) ◽  
pp. 705-711 ◽  
Author(s):  
Sheila E. Widnall ◽  
Thomas L. Wolf
2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Stavros Vouros ◽  
Ioannis Goulos ◽  
Calum Scullion ◽  
Devaiah Nalianda ◽  
Vassilios Pachidis

Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust evidence necessary for calibration of semiempirical vortex core models.


2004 ◽  
Vol 108 (1083) ◽  
pp. 237-244 ◽  
Author(s):  
F. N. Coton ◽  
R. A. McD. Galbraith ◽  
T. Wang ◽  
S. J. Newman

AbstractThe interaction of a helicopter tail rotor blade with the tip vortex system from the main rotor is a significant source of noise and, in some flight states, can produce marked reductions in control effectiveness. This paper describes a series of wind-tunnel tests to simulate tail rotor blade vortex interaction with a view to providing data for the development and validation of numerical simulations of the phenomenon. In the experiments, which were carried out in the Argyll wind-tunnel of Glasgow University, a single-bladed rotor located in the tunnel’s contraction was used to generate the tip vortex which travelled downstream into the working section where it interacted with a model tail rotor. The tail rotor was instrumented with miniature pressure transducers that measured the aerodynamic response during the interaction. The results suggest that the rotor blade vortex interaction is similar in form to that measured at much higher spatial resolution on a fixed, non-rotating blade. The combination of the two datasets, therefore, provides a valuable resource for the development and validation of predictive schemes.


2001 ◽  
Vol 123 (4) ◽  
pp. 469-474 ◽  
Author(s):  
Joon W. Lim ◽  
Chee Tung ◽  
Yung H. Yu

Analytically predicted results of blade-vortex interaction (BVI) airloads, using the second- generation comprehensive helicopter analysis system (2GCHAS), are presented with the experimental results obtained from the higher-harmonic-control aeroacoustic rotor test (HART) program using a 40-percent, Mach-scaled model of the hingeless BO-105 main rotor. Correlations include airloads, blade tip deflections, and tip vortex geometry. The effects on blade airload predictions are studied with higher-harmonic pitch controls (HHC). It was concluded that the blade torsional deflection and the wake system play a very important role in predicting BVI airloads.


2021 ◽  
pp. 1475472X2110526
Author(s):  
Trushant K Patel ◽  
Alexander J Lilley ◽  
Weiqi Shen ◽  
Christian Porrello ◽  
Alexander Schindler-Tyka ◽  
...  

Blade vortex interaction noise is a problematic and dominant component of rotor noise. Plasma actuators strategically placed at the tip of the rotor blades can reduce the strength of the tip vortices. This reduction has the potential to significantly reduce blade vortex interaction noise. A combined experimental, numerical, and theoretical program shows supporting evidence that low power plasma actuators can effectively lower coherence of the blade tip vortex and reduce blade vortex interaction noise over-pressure by up to 80%. For a nominal small five-bladed unmanned aerial vehicle, we predict an approximate 8.88 maximum ΔdB reduction for a 150 m/s tip speed. Experimental, computational, and acoustic modeling support these predictions. This study represents a fundamental investigation in the fixed-frame, which provides evidence for higher level research and testing in a rotating framework.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 909-912
Author(s):  
Ronald J. Epstein ◽  
John A. Rule ◽  
Donald B. Bliss

1990 ◽  
Author(s):  
MICHAEL WILDER ◽  
MATTHEW PESCE ◽  
DEMETRI TELIONIS ◽  
DAVIDR. POLING

Sign in / Sign up

Export Citation Format

Share Document