scholarly journals Impact of Tip-Vortex Modeling Uncertainty on Helicopter Rotor Blade–Vortex Interaction Noise Prediction

2021 ◽  
Vol 66 (1) ◽  
pp. 1-13
Author(s):  
Stavros Vouros ◽  
Ioannis Goulos ◽  
Calum Scullion ◽  
Devaiah Nalianda ◽  
Vassilios Pachidis

Free-wake models are routinely used in aeroacoustic analysis of helicopter rotors; however, their semiempiricism is accompanied with uncertainty related to the modeling of physical wake parameters. In some cases, analysts have to resort to empirical adaption of these parameters based on previous experimental evidence. This paper investigates the impact of inherent uncertainty in wake aerodynamic modeling on the robustness of helicopter rotor aeroacoustic analysis. A free-wake aeroelastic rotor model is employed to predict high-resolution unsteady airloads, including blade–vortex interactions. A rotor aeroacoustics model, based on integral solutions of the Ffowcs Williams–Hawkings equation, is utilized to calculate aerodynamic noise in the time domain. The individual analytical models are incorporated into an uncertainty analysis numerical procedure, implemented through nonintrusive Polynomial Chaos expansion. The potential sources of uncertainty in wake tip-vortex core growth modeling are identified and their impact on noise predictions is systematically quantified. When experimental data to adjust the tip-vortex core model are not available the uncertainty in acoustic pressure and noise impact at observers dominated by blade–vortex interaction noise can reach up to 25% and 3.50 dB, respectively. A set of generalized uncertainty maps is derived, for use as modeling guidelines for aeroacoustic analysis in the absence of the robust evidence necessary for calibration of semiempirical vortex core models.

1999 ◽  
Vol 103 (1021) ◽  
pp. 143-146 ◽  
Author(s):  
T. Wang ◽  
F. N. Coton

Abstract The Beddoes near wake model, developed for high resolution blade vortex interaction computations, enables efficient numerical evaluation of the downwash due to trailed vorticity in the near wake of a helicopter rotor. The model is, however, limited by the assumption that the near wake lies in the plane of the rotor and, in some cases, by its inability to accurately evaluate the induced velocity contribution from vorticity trailed from inboard blade sections. In this paper, modifications to the method are proposed which address these issues and allow it to be used with confidence over a wider range of rotor flows.


AIAA Journal ◽  
1991 ◽  
Vol 29 (9) ◽  
pp. 1355-1362 ◽  
Author(s):  
D. J. Lee ◽  
C. A. Smith

2018 ◽  
Vol 17 (3) ◽  
pp. 295-318 ◽  
Author(s):  
Sara Modini ◽  
Giorgio Graziani ◽  
Giovanni Bernardini ◽  
Massimo Gennaretti

With the aim of alleviating the noise annoyance emitted by blade–vortex interactions occurring on helicopter main rotors, the present work presents a methodology suitable for the identification of a multi-cyclic harmonic controller based on the actuation of rotor blades equipped with Miniature Trailing Edge Effectors. The objective of the control methodology is the direct suppression of the aerodynamic noise sources by generation of localized high-harmonic blade–vortex interaction counter-actions. The set-up of control devices is selected on the basis of the blade–vortex interaction scenario, taking into account a trade-off between effectiveness and power requirement. The control law is efficiently identified by means of an optimal controller synthesized through suitable two-dimensional multi-vortex, parallel blade–vortex interaction problems. The proposed methodology is validated by the application to realistic helicopter main rotors during low-speed descent flights, numerically simulated through high-fidelity aerodynamic and aeroacoustic solvers based, respectively, upon a three-dimensional free-wake boundary element method to solve the potential flow around rotors in blade–vortex interaction conditions and the Farassat 1A formulation. Results concerning the capability of the proposed controller to alleviate the blade–vortex interaction noise emitted by a realistic helicopter main rotor are presented and discussed.


Author(s):  
Liangquan Wang ◽  
Guohua Xu ◽  
Yongjie Shi

Prediction of helicopter rotor impulsive noise is practically a very challenging task. This paper describes a hybrid method to predict rotor impulsive noise for both high-speed impulsive noise and blade–vortex interaction noise. The hybrid solver has been developed by combining the advantages of three different methods: (1) a computational fluid dynamics method based on Reynolds-averaged Navier–Stokes equations to account for the viscous and compressible effects near the blade; (2) a vorticity transport model to predict rotor wake system without artificial dissipation; and (3) an acoustic calculation method, based on Ffowcs-Williams Hawkings equation implemented to a permeable data surface. The developed hybrid solver is validated through available test data, for the cases of UH-1H model rotor, AH-1 Operational Loads Survey rotor, and Helishape 7A rotor. Peak sound pressure level of high-speed impulsive noise is accurately predicted with relative errors less than 7%. Additionally, acoustic waveform of blade–vortex interaction noise is well captured though it is sensitive to small changes in aerodynamic load. It is suggested that present hybrid method is versatile for the prediction of rotor impulsive noise with moderate computational cost.


10.2514/1.130 ◽  
2003 ◽  
Vol 40 (6) ◽  
pp. 1123-1130
Author(s):  
Joon W. Lim ◽  
Yung H. Yu ◽  
Wayne Johnson

2003 ◽  
Vol 40 (6) ◽  
pp. 1123-1130 ◽  
Author(s):  
Joon W. Lim ◽  
Yung H. Yu ◽  
Wayne Johnson

2004 ◽  
Vol 108 (1083) ◽  
pp. 237-244 ◽  
Author(s):  
F. N. Coton ◽  
R. A. McD. Galbraith ◽  
T. Wang ◽  
S. J. Newman

AbstractThe interaction of a helicopter tail rotor blade with the tip vortex system from the main rotor is a significant source of noise and, in some flight states, can produce marked reductions in control effectiveness. This paper describes a series of wind-tunnel tests to simulate tail rotor blade vortex interaction with a view to providing data for the development and validation of numerical simulations of the phenomenon. In the experiments, which were carried out in the Argyll wind-tunnel of Glasgow University, a single-bladed rotor located in the tunnel’s contraction was used to generate the tip vortex which travelled downstream into the working section where it interacted with a model tail rotor. The tail rotor was instrumented with miniature pressure transducers that measured the aerodynamic response during the interaction. The results suggest that the rotor blade vortex interaction is similar in form to that measured at much higher spatial resolution on a fixed, non-rotating blade. The combination of the two datasets, therefore, provides a valuable resource for the development and validation of predictive schemes.


Sign in / Sign up

Export Citation Format

Share Document