Development and validation of the V/STOL aerodynamics and stability and control manual

1983 ◽  
Vol 20 (5) ◽  
pp. 450-455
Author(s):  
M. M. Walters ◽  
C. Henderson
Author(s):  
M Rostami ◽  
SA Bagherzadeh

This study is intended to introduce an enhanced semi-empirical method for estimation of longitudinal and lateral-directional stability and control derivatives in the preliminary design phase of light airplanes. Specialised for light, single or twin propeller-driven airplanes, available state-of-the-art analytical procedures and design data compendia are combined and modified in a unique compatible method, and automated in NAMAYEH software. In the present study, modified procedures and the software structure are presented. Afterwards, the proposed method is applied to a four-place, low wing, single-engine, propeller-driven general aviation airplane. In order to validate the proposed method, the estimated aerodynamic characteristics are compared with the wind tunnel test data as well as DATCOM and VLM-based method estimations. The results indicate that the proposed method is able to predict the aerodynamic characteristics in an acceptable range of accuracy from zero-lift to stall conditions in all configurations.


1997 ◽  
Author(s):  
Zhongjun Wang ◽  
Zhidai He ◽  
C. Lan ◽  
Zhongjun Wang ◽  
Zhidai He ◽  
...  

Author(s):  
Ashraf Omran ◽  
Mohamed Elshabasy ◽  
Wael Mokhtar ◽  
Brett Newman ◽  
Mohamed Gharib

Author(s):  
Mathias Stefan Roeser ◽  
Nicolas Fezans

AbstractA flight test campaign for system identification is a costly and time-consuming task. Models derived from wind tunnel experiments and CFD calculations must be validated and/or updated with flight data to match the real aircraft stability and control characteristics. Classical maneuvers for system identification are mostly one-surface-at-a-time inputs and need to be performed several times at each flight condition. Various methods for defining very rich multi-axis maneuvers, for instance based on multisine/sum of sines signals, already exist. A new design method based on the wavelet transform allowing the definition of multi-axis inputs in the time-frequency domain has been developed. The compact representation chosen allows the user to define fairly complex maneuvers with very few parameters. This method is demonstrated using simulated flight test data from a high-quality Airbus A320 dynamic model. System identification is then performed with this data, and the results show that aerodynamic parameters can still be accurately estimated from these fairly simple multi-axis maneuvers.


Author(s):  
Dongyu Li ◽  
Haoyong Yu ◽  
Keng Peng Tee ◽  
Yan Wu ◽  
Shuzhi Sam Ge ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3680
Author(s):  
Lasantha Meegahapola ◽  
Siqi Bu

Power network operators are rapidly incorporating wind power generation into their power grids to meet the widely accepted carbon neutrality targets and facilitate the transition from conventional fossil-fuel energy sources to the clean and low-carbon renewable energy sources [...]


Sign in / Sign up

Export Citation Format

Share Document