Approximate method for the prediction of propeller noise near-field effects

1993 ◽  
Vol 30 (5) ◽  
pp. 603-610 ◽  
Author(s):  
N. Peake ◽  
W. K. Boyd
2010 ◽  
Vol 69 (18) ◽  
pp. 1615-1622
Author(s):  
R. I. Tsekhmistro ◽  
N. N. Gorobets

2010 ◽  
Vol 10 (6) ◽  
pp. 1281-1292 ◽  
Author(s):  
B. Poisson ◽  
R. Pedreros

Abstract. Two historical landslide-induced tsunamis that reached the coasts of the French Lesser Antilles are studied. First, the Martinique coast was hit by a tsunami down the western flank of Montagne Pelée at the beginning of the big eruption of May 1902. More recently, the northeastern coast of Guadeloupe was affected by a tsunami that had been generated around Montserrat by pyroclastic flows entering the sea, during the July 2003 eruption of the Soufrière Hills volcano. We use a modified version of the GEOWAVE model to compute numerical simulations of both events. Two source hypotheses are considered for each tsunami. The comparison of the simulation results with reported tsunami height data helps to discriminate between the tested source decriptions. In the Martinique case, we obtain a better fit to data when considering three successive lahars entering the sea, as a simplified single source leads to an overstimation of the tsunami wave heights at the coast. In the Montserrat case, the best model uses a unique source which volume corresponds to published data concerning the peak volume flow. These findings emphasize the importance of an accurate description of the relevant volume as well as the timing sequence of the source event in landslide-generated tsunami modelling. They also show that considering far-field effects in addition to near-field effects may significantly improve tsunami modelling.


2007 ◽  
Author(s):  
Andrei M. Nemilentsau ◽  
Gregory Ya. Slepyan ◽  
Sergey A. Maksimenko

2010 ◽  
Vol 107 (7) ◽  
pp. 074305 ◽  
Author(s):  
Vijay M. Sundaram ◽  
Alok Soni ◽  
Richard E. Russo ◽  
Sy-Bor Wen

2022 ◽  
Vol 185 ◽  
pp. 108395
Author(s):  
Yan Wu ◽  
Michael J. Kingan ◽  
Ryan S. McKay ◽  
Sung Tyaek Go ◽  
Young-min Shim

2015 ◽  
Vol 54 (2) ◽  
pp. 025109 ◽  
Author(s):  
Yi Tian ◽  
Hui Yan ◽  
Xin Wang ◽  
Li Zhang ◽  
Zhuo Li

2001 ◽  
Author(s):  
Ashish S. Purekar ◽  
Darryll J. Pines
Keyword(s):  

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2899 ◽  
Author(s):  
Gael Verao Fernandez ◽  
Philip Balitsky ◽  
Vasiliki Stratigaki ◽  
Peter Troch

For renewable wave energy to operate at grid scale, large arrays of Wave Energy Converters (WECs) need to be deployed in the ocean. Due to the hydrodynamic interactions between the individual WECs of an array, the overall power absorption and surrounding wave field will be affected, both close to the WECs (near field effects) and at large distances from their location (far field effects). Therefore, it is essential to model both the near field and far field effects of WEC arrays. It is difficult, however, to model both effects using a single numerical model that offers the desired accuracy at a reasonable computational time. The objective of this paper is to present a generic coupling methodology that will allow to model both effects accurately. The presented coupling methodology is exemplified using the mild slope wave propagation model MILDwave and the Boundary Elements Methods (BEM) solver NEMOH. NEMOH is used to model the near field effects while MILDwave is used to model the WEC array far field effects. The information between the two models is transferred using a one-way coupling. The results of the NEMOH-MILDwave coupled model are compared to the results from using only NEMOH for various test cases in uniform water depth. Additionally, the NEMOH-MILDwave coupled model is validated against available experimental wave data for a 9-WEC array. The coupling methodology proves to be a reliable numerical tool as the results demonstrate a difference between the numerical simulations results smaller than 5% and between the numerical simulations results and the experimental data ranging from 3% to 11%. The simulations are subsequently extended for a varying bathymetry, which will affect the far field effects. As a result, our coupled model proves to be a suitable numerical tool for simulating far field effects of WEC arrays for regular and irregular waves over a varying bathymetry.


Sign in / Sign up

Export Citation Format

Share Document