Errata: "Numerical Method for Hypersonic Internal Flow over Blunt Leading Edges and Two Blunt Bodies"

AIAA Journal ◽  
1973 ◽  
Vol 11 (2) ◽  
pp. 0256a-0256a
Author(s):  
NORBERT D'SOUZA ◽  
SANNU MOLDER ◽  
GINO MORETTI
AIAA Journal ◽  
1972 ◽  
Vol 10 (5) ◽  
pp. 617-622 ◽  
Author(s):  
NORBERT D'SOUZA ◽  
SANNU MOLDER ◽  
GINO MORETTI

2021 ◽  
Vol 11 (19) ◽  
pp. 9344
Author(s):  
Lu Yang ◽  
Guangming Zhang

Currently, aerothermal research into scramjet-propelled vehicles characterized by a wedge-shaped section is relatively sparse. Based on the Mach number, grid strategy, and numerical method, an effective simulation scheme for predicting the aerodynamic heat of a scramjet-propelled vehicle during flight is proposed in this paper. At different Mach numbers, the appropriate grid strategy and numerical method were determined by validation tests. Two-dimensional external flow field models based on wedge sections were established and, unlike in blunt bodies, the tests showed that at the high supersonic stage, the ideal cell Reynolds number should be no larger than 16. At the hypersonic stage, the ideal cell Reynolds number and aspect ratio of wall cells near the shock should be no larger than 40, and the AUSM+ flux type performs better than Roe’s FDS flux type at the above stages. The aerothermal prediction indicates that during a flight time of about 34 s, the temperature change reaches about 1913.35 °C, and the maximum average temperature change rate reaches 115 °C/s.


1959 ◽  
Vol 10 (3) ◽  
pp. 247-265
Author(s):  
G. J. Hancock

On the basis of the linearised theory, the integral relationship for the incidence distribution in terms of the velocity potential is established for wings with subsonic leading edges. Some analytical problems are analysed. A simple general numerical method is given for this design problem which compares favourably with exact linear theories. In Part II, to be published, a further numerical method is developed, for calculating the loading onanyspecified thin wing with subsonic leading edges, which again agrees favourably with exact linear theory. Both of these numerical techniques can be easily accommodated on desk calculating machines.


2020 ◽  
Vol 14 (3) ◽  
pp. 7109-7124
Author(s):  
Nasreddine Sakhri ◽  
Younes Menni ◽  
Houari Ameur ◽  
Ali J. Chamkha ◽  
Noureddine Kaid ◽  
...  

The wind catcher or wind tower is a natural ventilation technique that has been employed in the Middle East region and still until nowadays. The present paper aims to study the effect of the one-sided position of a wind catcher device against the ventilated space or building geometry and its natural ventilation performance. Four models based on the traditional design of a one-sided wind catcher are studied and compared. The study is achieved under the climatic conditions of the South-west of Algeria (arid region). The obtained results showed that the front and Takhtabush’s models were able to create the maximum pressure difference (ΔP) between the windward and leeward of the tower-house system. Internal airflow velocities increased with the increase of wind speed in all studied models. For example, at Vwind = 2 m/s, the internal flow velocities were 1.7, 1.8, 1.3, and 2.5 m/s for model 1, 2, 3, and 4, respectively. However, at Vwind = 6 m/s, the internal flow velocities were 5.6, 5.5, 2.5, and 7 m/s for model 1, 2, 3, and 4, respectively. The higher internal airflow velocities are given by Takhtabush, traditional, front and middle tower models, respectively, with a reduction rate between the tower outlet and occupied space by 72, 42, 36, and 33% for the middle tower, Takhtabush, traditional tower, and the front model tower, respectively. This reduction is due to the due to internal flow resistance. The third part of the study investigates the effect of window (exist opening) position on the opposite wall. The upper, middle and lower window positions are studied and compared. The air stagnation or recirculation zone inside the ventilated space reduced from 55% with the lower window to 46% for the middle window and reached 35% for the upper window position. The Front and Takhtabush models for the one-sided wind catcher with an upper window position are highly recommended for the wind-driven natural ventilation in residential houses that are located in arid regions.


Sign in / Sign up

Export Citation Format

Share Document