Erratum: "Effects of Atmospheric Drag on the Position of Satellites in Eccentric Orbits"

1966 ◽  
Vol 3 (12) ◽  
pp. 1814b-1814b
Author(s):  
J. OTTERMAN ◽  
K. LICHTENFELD
2013 ◽  
Vol 39 (10) ◽  
pp. 1722
Author(s):  
Zhao-Wei SUN ◽  
Wei-Chao ZHONG ◽  
Shi-Jie ZHANG ◽  
Jian ZHANG

1999 ◽  
Vol 520 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Geoffrey W. Marcy ◽  
R. Paul Butler ◽  
Steven S. Vogt ◽  
Debra Fischer ◽  
Michael C. Liu
Keyword(s):  

2020 ◽  
Vol 29 (1) ◽  
pp. 210-219
Author(s):  
Zhang Wei ◽  
Cui Wen ◽  
Wang Xiuhong ◽  
Wei Dong ◽  
Liu Xing

AbstractDuring re-entry objects with low-eccentricity orbits traverse a large portion of the dense atmospheric region almost every orbital revolution. Their perigee decays slowly, but the apogee decays rapidly. Because ballistic coefficients change with altitude, re-entry predictions of objects in low-eccentricity orbits are more difficult than objects in nearly circular orbits. Problems in orbit determination, such as large residuals and non-convergence, arise for this class of objects, especially in the case of sparse observations. In addition, it might be difficult to select suitable initial ballistic coefficient for re-entry prediction. We present a new re-entry prediction method based on mean ballistic coefficients for objects with low-eccentricity orbits. The mean ballistic coefficient reflects the average effect of atmospheric drag during one orbital revolution, and the coefficient is estimated using a semi-numerical method with a step size of one period. The method is tested using Iridium-52 which uses sparse observations as the data source, and ten other objects with low-eccentricity orbits which use TLEs as the data source. We also discuss the performance of the mean ballistic coefficient when used in the evolution of drag characteristics and orbit propagation. The results show that the mean ballistic coefficient is ideal for re-entry prediction and orbit propagation of objects with low-eccentricity orbits.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Lu Cao ◽  
Hengnian Li

A new set of linearized differential equations governing relative motion of inner-formation satellite system (IFSS) is derived with the effects of J2 as well as atmospheric drag. The IFSS consists of the “inner satellite” and the “outer satellite,” this special configuration formation endows its some advantages to map the gravity field of earth. For long-term IFSS in elliptical orbit, the high-fidelity set of linearized equations is more convenient than the nonlinear equations for designing formation control system or navigation algorithms. In addition, to avoid the collision between the inner satellite and the outer satellite, the minimum sliding mode error feedback control (MSMEFC) is adopted to perform a real-time control on the outer satellite in the presence of uncertain perturbations from the system and space. The robustness and steady-state error of MSMEFC are also discussed to show its theoretical advantages than traditional sliding mode control (SMC). Finally, numerical simulations are performed to check the fidelity of the proposed equations. Moreover, the efficacy of the MSMEFC is performed to control the IFSS with high precision.


2007 ◽  
Vol 3 (S246) ◽  
pp. 291-300 ◽  
Author(s):  
Scott M. Ransom

AbstractGlobular clusters produce orders of magnitude more millisecond pulsars per unit mass than the Galactic disk. Since the first cluster pulsar was uncovered 20 years ago, at least 138 have been identified – most of which are binary millisecond pulsars. Because their origins involve stellar encounters, many of the systems are exotic objects that would never be observed in the Galactic disk. Examples include pulsar-main sequence binaries, extremely rapid rotators (including the current record holder), and millisecond pulsars in highly eccentric orbits. These systems are allowing new probes of the interstellar medium, the equation of state of material at supra-nuclear density, the masses of neutron stars, and globular cluster dynamics.


Sign in / Sign up

Export Citation Format

Share Document