Gas-Surface Interaction: Catalytic Decomposition of DCOOD Studied by Reactive Scattering of a Modulated DCOOD Nozzle Beam by a Polycrystalline Platinum Surface in Ultra-High Vacuum

1999 ◽  
Vol 594 ◽  
Author(s):  
C. S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D. B. Bogy

AbstractTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carboncoated Al2O3-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated Al2O3/TiC sliders, forming CF3 (69) and C2F5 (119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation.


2019 ◽  
Vol 4 (1) ◽  
pp. 29 ◽  
Author(s):  
Maren Hellwig ◽  
Martin Köppen ◽  
Albert Hiller ◽  
Hans Koslowski ◽  
Andrey Litnovsky ◽  
...  

The effect of surface roughness on angular distributions of reflected and physically sputtered particles is investigated by ultra-high vacuum (UHV) ion-surface interaction experiments. For this purpose, a smooth (R a = 5.9 nm) and a rough (R a = 20.5 nm) tungsten (W) surface were bombarded with carbon ions 13C+ under incidence angles of 30 ∘ and 80 ∘ . Reflected and sputtered particles were collected on foils to measure the resulting angular distribution as a function of surface morphology. For the qualitative and quantitative analysis, secondary ion mass spectrometry (SIMS) and nuclear reaction analysis (NRA) were performed. Simulations of ion-surface interactions were carried out with the SDTrimSP (Static Dynamic Transport of Ions in Matter Sputtering) code. For rough surfaces, a special routine was derived and implemented. Experimental as well as calculated results prove a significant impact of surface roughness on the angular distribution of reflected and sputtered particles. It is demonstrated that the effective sticking of C on W is a function of the angle of incidence and surface morphology. It is found that the predominant ion-surface interaction process changes with fluence.


1999 ◽  
Vol 122 (2) ◽  
pp. 458-464 ◽  
Author(s):  
Chao-Yuan Chen ◽  
Jianjun Wei ◽  
Walton Fong ◽  
David B. Bogy ◽  
C. Singh Bhatia

Tribo-chemical studies of the head/disk interface (HDI) were conducted using hydrogenated CHx carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carbon-coated Al2O3-TiC sliders and thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. The friction and catalytic decomposition mechanisms as well as the thermal behavior of ZDOL are described, and data demonstrating the chemical reactions of the lubricant and carbon overcoat are also presented. During the sliding at the carbon-coated slider/ZDOL lubricated CHx disk interface, frictional heating is the primary decomposition mechanism of ZDOL. [S0742-4787(00)01902-0]


1999 ◽  
Vol 593 ◽  
Author(s):  
C.S. Bhatia ◽  
C.-Y. Chen ◽  
W. Fong ◽  
D.B. Bogy

ABSTRACTTribochemical studies of the effect of lubricant bonding on the tribology of the head/disk interface (HDI) were conducted using hydrogenated (CHx) carbon disk samples coated with perfluoropolyether ZDOL lubricant. The studies involved drag tests with uncoated and carbon-coated A1203-TiC sliders and also thermal desorption experiments in an ultra-high vacuum (UHV) tribochamber. We observed that a larger mobile lubricant portion significantly enhances the wear durability of the (head/disk interface) HDI by providing a reservoir to constantly replenish the lubricant displaced in the wear track during drag tests. In the thermal desorption tests we observed two distinct temperatures of desorption. The mobile ZDOL layer is desorbed at the lower thermal desorption temperature and the residual bonded ZDOL layer is desorbed at the higher thermal desorption temperature. We also observed that the hydrogen evolution from CHx overcoats initiates lubricant catalytic decomposition with uncoated A1203/TiC sliders, forming CF3 (69) and C2F5(119). The generation of Hydroflouric acid (HF) during thermal desorption experiments provides the formation mechanism of Lewis acid, which is the necessary component for catalytic reaction causing Z-DOL lube degradation


Author(s):  
George H. N. Riddle ◽  
Benjamin M. Siegel

A routine procedure for growing very thin graphite substrate films has been developed. The films are grown pyrolytically in an ultra-high vacuum chamber by exposing (111) epitaxial nickel films to carbon monoxide gas. The nickel serves as a catalyst for the disproportionation of CO through the reaction 2C0 → C + CO2. The nickel catalyst is prepared by evaporation onto artificial mica at 400°C and annealing for 1/2 hour at 600°C in vacuum. Exposure of the annealed nickel to 1 torr CO for 3 hours at 500°C results in the growth of very thin continuous graphite films. The graphite is stripped from its nickel substrate in acid and mounted on holey formvar support films for use as specimen substrates.The graphite films, self-supporting over formvar holes up to five microns in diameter, have been studied by bright and dark field electron microscopy, by electron diffraction, and have been shadowed to reveal their topography and thickness. The films consist of individual crystallites typically a micron across with their basal planes parallel to the surface but oriented in different, apparently random directions about the normal to the basal plane.


Author(s):  
R. H. Geiss ◽  
R. L. Ladd ◽  
K. R. Lawless

Detailed electron microscope and diffraction studies of the sub-oxides of vanadium have been reported by Cambini and co-workers, and an oxidation study, possibly complicated by carbon and/or nitrogen, has been published by Edington and Smallman. The results reported by these different authors are not in good agreement. For this study, high purity polycrystalline vanadium samples were electrochemically thinned in a dual jet polisher using a solution of 20% H2SO4, 80% CH3OH, and then oxidized in an ion-pumped ultra-high vacuum reactor system using spectroscopically pure oxygen. Samples were oxidized at 350°C and 100μ oxygen pressure for periods of 30,60,90 and 160 minutes. Since our primary interest is in the mechanism of the low pressure oxidation process, the oxidized samples were cooled rapidly and not homogenized. The specimens were then examined in the HVEM at voltages up to 500 kV, the higher voltages being necessary to examine thick sections for which the oxidation behavior was more characteristic of the bulk.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Sign in / Sign up

Export Citation Format

Share Document