The High Resolution Scanning Transmission Electron Microscope

Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.

2006 ◽  
Vol 12 (S02) ◽  
pp. 1366-1367 ◽  
Author(s):  
K Furuya ◽  
K Mitsuishi ◽  
M Tanaka ◽  
M Takeguchi ◽  
Y Kondo ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2006 in Chicago, Illinois, USA, July 30 – August 3, 2006


Author(s):  
P. S. D. Lin

In assessing the resolving power of a high resolution scanning electron microscope using field emission tip (Hitachi HFS-2), two types of specimens were found to be of value.Fig. 1a, 1b are two successive exposures of some bright spots found on some thin carbon films. These carbon films were originally prepared for work in a high resolution scanning transmission electron microscope. Spots similar in size and distribution have been detected on micrographs taken in that microscope (Fig. 2).


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
J. W. Wiggins ◽  
M. Beer ◽  
D. C. Woodruff ◽  
J. A. Zubin

A high resolution scanning transmission electron microscope has been constructed and is operating. The initial task of this instrument is to attempt the sequencing of DNA by heavy-atom specific staining. It is also suitable for many other biological investigations requiring high resolution, low contamination and minimum radiation damage.The basic optical parameters are: 20 to 100 KV acceleration potential, objective lens focal length of 1.0 mm. with Cs = 0.7 mm., and two additional lenses designated as condensor and diffraction lenses. The purpose of the condensor lens is to provide a parallel beam incident to the objective, and the diffraction lens produces an image of the back focal plane of the objective in the plane of an annular detector.


Author(s):  
Oliver C. Wells ◽  
P.C. Cheng

In this discussion the words “high resolution imaging” of a solid sample in the scanning electron microscope (SEM) mean that details can be resolved that are considerably smaller than the penetration depth of the incident electron beam (EB) into the specimen. “Atomic resolution” in either the transmission electron microscope (TEM) or scanning transmission electron microscope (STEM) means that columns of atoms are resolved.Image contrasts in the backscattered electron (BSE) image are strongly affected by the specimen tilt and by the position and energy sensitivity of the BSE detector. The expression “BSE image” generally implies that the specimen is normal to the beam and the detector is above it. This shows compositional variations in the specimen with a spatial resolution limited by the spreading of the EB during the initial stages of penetration. This is similar in basic principle to the Z-Contrast method in the STEM that shows atomic resolution from a thinned single crystal mounted in the magnetic field of the focusing lens.


2010 ◽  
Vol 16 (S2) ◽  
pp. 102-103
Author(s):  
H Inada ◽  
M Konno ◽  
Y Suzuki ◽  
K Nakamura ◽  
J Wall ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


Sign in / Sign up

Export Citation Format

Share Document