Method for increasing wind tunnel Mach number for large-scale inlet testing

1972 ◽  
Author(s):  
E. LATHAM ◽  
N. SORENSEN
Keyword(s):  
1973 ◽  
Vol 10 (10) ◽  
pp. 577-578
Author(s):  
Eldon A. Latham ◽  
Norman E. Sorensen
Keyword(s):  

Author(s):  
Charlotte Hertel ◽  
Christoph Bode ◽  
Dragan Kožulović ◽  
Tim Schneider

An optimized subsonic compressor tandem cascade was investigated experimentally and numerically. Since the design aims at incompressible applications, a low inlet Mach number of 0.175 was used. The experiments were carried out at the low speed cascade wind tunnel at the Technische Universität Braunschweig. For the numerical simulations, the CFD-solver TRACE of DLR Cologne was used, together with a curvature corrected k-ω turbulence model and the γ-Reθ transition model. Besides the incidence variation, the aerodynamic loading has also been varied by contracting endwalls. Results are presented and discussed for different inlet angles and endwall contractions: pressure distribution, loss coefficient, turning, pressure rise, AVDR and Mach number. The comparison of experimental and numerical results is always adequate for a large range of incidence. In addition, a comparison is made to an existing high subsonic tandem cascade and conventional cascades. For the latter the Lieblein diffusion factor has been employed as a measure of aerodynamic loading to complete the Lieblein Chart of McGlumphy [1].


Author(s):  
Savvas S. Xanthos ◽  
Yiannis Andreopoulos

The interaction of traveling expansion waves with grid-generated turbulence was investigated in a large-scale shock tube research facility. The incident shock and the induced flow behind it passed through a rectangular grid, which generated a nearly homogeneous and nearly isotropic turbulent flow. As the shock wave exited the open end of the shock tube, a system of expansion waves was generated which traveled upstream and interacted with the grid-generated turbulence; a type of interaction free from streamline curvature effects, which cause additional effects on turbulence. In this experiment, wall pressure, total pressure and velocity were measured indicating a clear reduction in fluctuations. The incoming flow at Mach number 0.46 was expanded to a flow with Mach number 0.77 by an applied mean shear of 100 s−1. Although the strength of the generated expansion waves was mild, the effect on damping fluctuations on turbulence was clear. A reduction of in the level of total pressure fluctuations by 20 per cent was detected in the present experiments.


1995 ◽  
Vol 284 ◽  
pp. 171-216 ◽  
Author(s):  
N. T. Clemens ◽  
M. G. Mungal

Experiments were conducted in a two-stream planar mixing layer at convective Mach numbers,Mc, of 0.28, 0.42, 0.50, 0.62 and 0.79. Planar laser Mie scattering (PLMS) from a condensed alcohol fog and planar laser-induced fluorescence (PLIF) of nitric oxide were used for flow visualization in the side, plan and end views. The PLIF signals were also used to characterize the turbulent mixture fraction fluctuations.Visualizations using PLMS indicate a transition in the turbulent structure from quasi-two-dimensionality at low convective Mach number, to more random three-dimensionality for$M_c\geqslant 0.62$. A transition is also observed in the core and braid regions of the spanwise rollers as the convective Mach number increases from 0.28 to 0.62. A change in the entrainment mechanism with increasing compressibility is also indicated by signal intensity profiles and perspective views of the PLMS and PLIF images. These show that atMc= 0.28 the instantaneous mixture fraction field typically exhibits a gradient in the streamwise direction, but is more uniform in the cross-stream direction. AtMc= 0.62 and 0.79, however, the mixture fraction field is more streamwise uniform and with a gradient in the cross-stream direction. This change in the composition of the structures is indicative of different entrainment motions at the different compressibility conditions. The statistical results are consistent with the qualitative observations and suggest that compressibility acts to reduce the magnitude of the mixture fraction fluctuations, particularly on the high-speed edge of the layer.


AIAA Journal ◽  
2017 ◽  
Vol 55 (10) ◽  
pp. 3611-3616 ◽  
Author(s):  
M. A. Mustafa ◽  
N. J. Parziale ◽  
M. S. Smith ◽  
E. C. Marineau

Author(s):  
Jason B. Klepper ◽  
James R. Sirbaugh ◽  
Milt W. Davis

The purpose of an aircraft inlet system is to capture airflow from the free-stream and deliver it to an engine at the appropriate Mach number for that system. To meet design constraints, modern fighter aircraft have complex inlets with multiple turns that generally lead to both total pressure and swirl distortion at the engine face. These flow distortions can lead to reduced system performance, operability, and durability introducing issues in the overall success of the weapons system performing its mission. Therefore the integration of the airframe, inlet, and propulsion system is a key design issue in the development of military aircraft. The purpose of this paper is to demonstrate the dynamic (hybrid RANS/DDES) simulation capabilities of the HPCMP CREATE™-AV Kestrel tools by application to a sub-scale airframe/inlet system for a current military aircraft. The computational results were compared to wind tunnel results at various Mach number, angles of attack, angles of sideslip, and corrected flow rates. The inlet pressure recovery and distortion intensities for each case compared well to wind tunnel results. By comparing the computational results and wind tunnel test results, the applicability of these tools to future weapon systems design and development can be assessed.


2001 ◽  
Vol 432 ◽  
pp. 219-283 ◽  
Author(s):  
G. BRIASSULIS ◽  
J. H. AGUI ◽  
Y. ANDREOPOULOS

A decaying compressible nearly homogeneous and nearly isotropic grid-generated turbulent flow has been set up in a large scale shock tube research facility. Experiments have been performed using instrumentation with spatial resolution of the order of 7 to 26 Kolmogorov viscous length scales. A variety of turbulence-generating grids provided a wide range of turbulence scales with bulk flow Mach numbers ranging from 0.3 to 0.6 and turbulent Reynolds numbers up to 700. The decay of Mach number fluctuations was found to follow a power law similar to that describing the decay of incompressible isotropic turbulence. It was also found that the decay coefficient and the decay exponent decrease with increasing Mach number while the virtual origin increases with increasing Mach number. A possible mechanism responsible for these effects appears to be the inherently low growth rate of compressible shear layers emanating from the cylindrical rods of the grid. Measurements of the time-dependent, three dimensional vorticity vectors were attempted for the first time with a 12-wire miniature probe. This also allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. It was found that the fluctuations of these quantities increase with increasing mean Mach number of the flow. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause.


Sign in / Sign up

Export Citation Format

Share Document