An experimental investigation of laminar and transitional heat transfer to a sharp slender cone at free-stream Mach number 5, including effects of angle of attack and circumferential heat transfer

Author(s):  
P. KROGMANN
2021 ◽  
Author(s):  
Sirikorn Chainok ◽  
Thanapol Rungroch ◽  
Pattarasuda Chairach ◽  
Prasert Prapamonthon ◽  
Soemsak Yooyen ◽  
...  

Abstract It is well-known that a wing is one of the most important parts of an aircraft as it is used to generate lift force. According to a wing moving at sufficiently high subsonic speeds, the flow speed on the wing’s upper surface can be supersonic due to acceleration through the curvature-created suction, thereby forming a shock wave in a lambda shape. Additionally, the lambda shock can interact with the boundary layer flow. These phenomena relate to disturbances in the flow field, including flow separation, thus causing undesirable effects on lift production. Hence, a better understanding of the phenomenon of wing-lambda-shock formation and its nature is essential. This study presents a numerical investigation of the lambda-shock formation on an ONERA M6 wing, which is known as a swept, semi-span wing with no twist, under parametric effects of angle-of-attack, and free-stream Mach number, which is increased up to the supersonic regime. The pressure coefficients obtained by simulations are validated by open data. Then, numerical results in terms of the local pressure coefficient, local Mach number, averaged lift and drag coefficients, and λ-shape characteristics based on Mach number and pressure coefficients are discussed under an investigated range of the parameters. Results show that the angle-of-attack and free-stream Mach number can affect the lambda shock formation on the wing upper surface physically. Specifically, an iso-sonic surface with lambda shock waves is disturbed when the angle-of-attack and free-stream Mach number vary in an investigated range. This also affects lift and drag coefficients of the wing.


2005 ◽  
Vol 4 (3) ◽  
pp. 363-372 ◽  
Author(s):  
V.I. Zapryagaev ◽  
I.N. Kavun

A study of the self-sustained quasi-periodic flows near the spike-tipped body at free-stream Mach number M∞ = 6 is carried out. The influence of length and spike cone angle on a flow structure is shown. The character of the pulsation flow mode depending on the geometry of the model is defined.


1977 ◽  
Vol 80 (2) ◽  
pp. 279-292 ◽  
Author(s):  
T. Davies ◽  
G. Walker

A numerical solution of the two-dimensional compressible laminar boundary-layer equations up to the point of separation is presented. For a particular mainstream velocity distribution it is necessary to specify the surface temperature (or the heat flux across the surface), the suction velocity, the free-stream Mach number and the viscosity-temperature relationship for a solution to be generated. The effect upon the position of separation of a hot or cold wall and of varying the free-stream Mach number is given special emphasis. The variations of the skin friction, heat transfer and various boundary-layer thicknesses for compressible flow past a circular cylinder and for flow with a linearly retarded mainstream were found. The behaviour of the solutions close to separation is investigated. Known functions which model the skin friction and heat transfer are introduced and are used to match the numerical solutions with the Buckmaster (1970) expansions.


2018 ◽  
Vol 857 ◽  
pp. 878-906 ◽  
Author(s):  
T. Nagata ◽  
T. Nonomura ◽  
S. Takahashi ◽  
Y. Mizuno ◽  
K. Fukuda

In this study, direct numerical simulation of the flow around a rotating sphere at high Mach and low Reynolds numbers is conducted to investigate the effects of rotation rate and Mach number upon aerodynamic force coefficients and wake structures. The simulation is carried out by solving the three-dimensional compressible Navier–Stokes equations. A free-stream Reynolds number (based on the free-stream velocity, density and viscosity coefficient and the diameter of the sphere) is set to be between 100 and 300, the free-stream Mach number is set to be between 0.2 and 2.0, and the dimensionless rotation rate defined by the ratio of the free-stream and surface velocities above the equator is set between 0.0 and 1.0. Thus, we have clarified the following points: (1) as free-stream Mach number increased, the increment of the lift coefficient due to rotation was reduced; (2) under subsonic conditions, the drag coefficient increased with increase of the rotation rate, whereas under supersonic conditions, the increment of the drag coefficient was reduced with increasing Mach number; and (3) the mode of the wake structure becomes low-Reynolds-number-like as the Mach number is increased.


2021 ◽  
Vol 91 (4) ◽  
pp. 558
Author(s):  
А.В. Потапкин ◽  
Д.Ю. Москвичев

The problem of a sonic boom generated by a slender body and local regions of supersonic flow heating is solved numerically. The free-stream Mach number of the air flow is 2. The calculations are performed by a combined method of phantom bodies. The results show that local heating of the incoming flow can ensure sonic boom mitigation. The sonic boom level depends on the number of local regions of incoming flow heating. One region of flow heating can reduce the sonic boom by 20% as compared to the sonic boom level in the cold flow. Moreover, consecutive heating of the incoming flow in two regions provides sonic boom reduction by more than 30%.


2019 ◽  
Vol 43 (1) ◽  
pp. 112-121
Author(s):  
Behnaz Beheshti Boroumand ◽  
Mahmoud Mani

Boundary layer and wake behaviors are strongly affected by airfoil motion. Moreover, parameters like body oscillation frequency, oscillation type, Mach number, and angle of attack play main roles in wake characteristics. In this research, both static and dynamic tests were carried out in a tri-sonic wind tunnel to study wake profiles experimentally by hot wire anemometry. All data were recorded at a free stream Mach number of 0.4. Quarter-length and half-length of chord were also considered as downstream distances from the trailing edge in pitching motions of mean angle of attack of −0.4°. Frequencies of 3 Hz and 6 Hz with amplitude of 3° were chosen as oscillation parameters. Voltages at hot wire outputs were measured and analyzed qualitatively and statistically with root-mean-square, correlation, mean value distribution, time history, and frequency. Flow parameters were obtained by computational studies under similar experimental test conditions. The wake characteristics obtained from numerical and experimental methods were compared.


Sign in / Sign up

Export Citation Format

Share Document