Heat transfer in cooled guide vanes

1977 ◽  
Author(s):  
W. TABAKOFF ◽  
R. KOTWAL ◽  
A. HAMED
Keyword(s):  
Author(s):  
Gongnan Xie ◽  
Bengt Sunde´n

Gas turbine blade tips encounter large heat load as they are exposed to the high temperature gas. A common way to cool the blade and its tip is to design serpentine passages with 180-deg turns under the blade tip-cap inside the turbine blade. Improved internal convective cooling is therefore required to increase the blade tip life time. This paper presents numerical predictions of turbulent fluid flow and heat transfer through two-pass channels with and without guide vanes placed in the turn regions using RANS turbulence modeling. The effects of adding guide vanes on the tip-wall heat transfer enhancement and the channel pressure loss were analyzed. The guide vanes have a height identical to that of the channel. The inlet Reynolds numbers are ranging from 100,000 to 600,000. The detailed three-dimensional fluid flow and heat transfer over the tip-walls are presented. The overall performances of several two-pass channels are also evaluated and compared. It is found that the tip heat transfer coefficients of the channels with guide vanes are 10∼60% higher than that of a channel without guide vanes, while the pressure loss might be reduced when the guide vanes are properly designed and located, otherwise the pressure loss is expected to be increased severely. It is suggested that the usage of proper guide vanes is a suitable way to augment the blade tip heat transfer and improve the flow structure, but is not the most effective way compared to the augmentation by surface modifications imposed on the tip-wall directly.


Author(s):  
Dong Myeong Lee ◽  
Jun Su Park ◽  
Dong Hyun Lee ◽  
Beom Soo Kim ◽  
Hyung Hee Cho

The present study investigated convective heat transfer inside a two-pass rectangular duct with guide vanes in the turning region. The objective was to determine the effect of the guide vanes on blade tip cooling. The duct had a hydraulic diameter (Dh) of 26.67 mm and an aspect ratio (AR) of 5. The duct inlet width was 80 mm, and the distance between the tip of the divider and the tip wall of the duct was also 80 mm. Various guide vane configurations were used in the turning region. The Reynolds number (Re), based on the hydraulic diameter, was held constant at 10,000. The naphthalene sublimation technique was used to determine the detailed local heat transfer coefficients, using the heat and mass transfer analogy. The results indicated that guide vanes in the turning region enhanced heat transfer in the blade tip region. The guide vane on the second-pass side of the turning region had higher heat transfer than the guide vane on the first-pass side. Strong secondary flow enhanced heat transfer in the blade tip region. Dean vortices induced by the guide vanes pushed the high-momentum core flow towards the tip wall, and heat transfer was increased in the turning region, but decreased in the second passage. Consequently, a guide vane on the second-pass side of the turning region generates high heat transfer rates on the tip surface, and can also increase the thermal performance factor in a two-pass duct.


1992 ◽  
Vol 114 (4) ◽  
pp. 734-740 ◽  
Author(s):  
S. P. Harasgama ◽  
C. D. Burton

Heat transfer and aerodynamic measurements have been made on the endwalls of an annular cascade of turbine nozzle guide vanes in the presence of film cooling. The results indicate that high levels of cooling effectiveness can be achieved on the endwalls of turbine nozzle guide vanes (NGV). The NGV were operated at the correct engine nondimensional conditions of Reynolds number, Mach number, gas-to-wall temperature ratio, and gas-to-coolant density ratio. The results show that the secondary flow and horseshoe vortex act on the coolant, which is convected toward the suction side of the NG V endwall passage. Consequently the coolant does not quite reach the pressure side/casing trailing edge, leading to diminished cooling in this region. Increasing the blowing rate from 0.52 to 1.1 results in significant reductions in heat transfer to the endwall. Similar trends are evident when the coolant temperature is reduced. Measured heat transfer rates indicate that over most of the endwall region the film cooling reduces the Nusselt number by 50 to 75 percent.


2015 ◽  
Vol 22 (1) ◽  
pp. 29-45 ◽  
Author(s):  
Susanna Cimina ◽  
Chenglong Wang ◽  
Lei Wang ◽  
Alfonso Niro ◽  
Bengt Sunden

Author(s):  
Ryoichi S. Amano ◽  
Mandana S. Saravani ◽  
Nicholas DiPasquale

Abstract The present work investigates the effects of various guide vane designs on the heat transfer enhancement of rotating U-Duct configuration with parallel 45-deg ribs. The ribs were installed on the bottom wall of the channel which has a constant heat flux boundary condition. The channel has a square cross-section with a 5.08 cm (2 in) hydraulic diameter. The first and second passes are 514 mm and 460 mm, respectively. The range of Reynolds number for turbulent flow is up to 35,000. The channel rotates in various speed up to 600 rpm which brings the maximum rotation number of 0.75. Several computational fluid dynamics simulations are carried out for this study to understand the effect of guide vanes on flow and heat transfer in serpentine channels under various operating conditions.


2015 ◽  
Vol 69 (4) ◽  
pp. 352-368 ◽  
Author(s):  
Lei Luo ◽  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Songtao Wang

Author(s):  
M. C. Spencer ◽  
G. D. Lock ◽  
T. V. Jones ◽  
N. W. Harvey

Aerodynamic and heat transfer measurements have been made on the hub and casing endwalls of an annular cascade of high pressure nozzle guide vanes. The measurements have been made over a range of engine representative Mach and Reynolds numbers and with large levels of freestream turbulence intensity. The transient liquid crystal technique has been employed, which has the advantage of yielding full surface maps of heat transfer coefficient. Computational predictions and aerodynamic measurements of Mach number distributions on the endwall surfaces are also presented, along with surface-shear flow visualisation using oil and dye techniques. The heat transfer results are discussed and interpreted in terms of the secondary flow and Mach number patterns.


Author(s):  
W. Colban ◽  
A. Gratton ◽  
K. A. Thole ◽  
M. Haendler

In a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film-cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.


2005 ◽  
Vol 128 (1) ◽  
pp. 53-61 ◽  
Author(s):  
W. Colban ◽  
A. Gratton ◽  
K. A. Thole ◽  
M. Haendler

In a typical gas turbine engine, the gas exiting the combustor is significantly hotter than the melting temperature of the turbine components. The highest temperatures in an engine are typically seen by the turbine inlet guide vanes. One method used to cool the inlet guide vanes is film cooling, which involves bleeding comparatively low-temperature, high-pressure air from the compressor and injecting it through an array of discrete holes on the vane surface. To predict the vane surface temperatures in the engine, it is necessary to measure the heat transfer coefficient and adiabatic film-cooling effectiveness on the vane surface. This study presents heat transfer coefficients and adiabatic effectiveness levels measured in a scaled-up, two-passage cascade with a contoured endwall. Heat transfer measurements indicated that the behavior of the boundary layer transition along the suction side of the vane showed sensitivity to the location of film-cooling injection, which was simulated through the use of a trip wire placed on the vane surface. Single-row adiabatic effectiveness measurements without any upstream blowing showed jet lift-off was prevalent along the suction side of the airfoil. Single-row adiabatic effectiveness measurements on the pressure side, also without upstream showerhead blowing, indicated jet lifted-off and then reattached to the surface in the concave region of the vane. In the presence of upstream showerhead blowing, the jet lift-off for the first pressure side row was reduced, increasing adiabatic effectiveness levels.


Author(s):  
S. P. Harasgama ◽  
C. D. Burton

Heat transfer and aerodynamic measurements have been made on the endwalls of an annular cascade of turbine nozzle guide vanes in the presence of film cooling. The results indicate that high levels of cooling effectiveness can be achieved on the endwalls of turbine nozzle guide vanes (NGV). The NGV were operated at the correct engine non-dimensional conditions of Reynolds number, Mach number, gas-to-wall temperature ratio and gas-to-coolant density ratio. The results show that the secondary flow and horse-shoe vortex act on the coolant which is converted towards the suction side of the NGV endwall passage. Consequently the coolant does not quite reach the pressure side/casing trailing edge, leading to diminished cooling in this region. Increasing the blowing rate from 0.52 to 1.1 results in significant reductions in heat transfer to the endwall. Similar trends are evident when the coolant temperature is reduced. Measured heat transfer rates indicate that over most of the endwall region the film cooling reduces the Nusselt number by 50% to 75%.


Sign in / Sign up

Export Citation Format

Share Document