Investigation of the influence of contaminated fuel on turbine vane surface deposition

1980 ◽  
Author(s):  
D. NEALY ◽  
W. TIMMERMAN ◽  
A. COHN
2008 ◽  
Vol 130 (4) ◽  
Author(s):  
N. Sundaram ◽  
M. D. Barringer ◽  
K. A. Thole

Film cooling is influenced by surface roughness and depositions that occur from contaminants present in the hot gas path, whether that film cooling occurs on the vane itself or on the endwalls associated with the vanes. Secondary flows in the endwall region also affect the film-cooling performance along the endwall. An experimental investigation was conducted to study the effect of surface deposition on film cooling along the pressure side of a first-stage turbine vane endwall. A large-scale wind tunnel with a turbine vane cascade was used to perform the experiments. The vane endwall was cooled by an array of film-cooling holes along the pressure side of the airfoil. Deposits having a semielliptical shape were placed along the pressure side to simulate individual row and multiple row depositions. Results indicated that the deposits lowered the average adiabatic effectiveness levels downstream of the film-cooling rows by deflecting the coolant jets toward the vane endwall junction on the pressure side. Results also indicated that there was a steady decrease in adiabatic effectiveness levels with a sequential increase in the number of rows with the deposits.


1981 ◽  
Vol 5 (5) ◽  
pp. 302-307
Author(s):  
D. A. Nealy ◽  
W. H. Timmerman ◽  
A. Cohn

Author(s):  
N. Sundaram ◽  
M. D. Barringer ◽  
K. A. Thole

Film-cooling is influenced by surface roughness and depositions that occur from contaminants present in the hot gas path, whether that film-cooling occurs on the vane itself or on the endwalls associated with the vanes. Secondary flows in the endwall region also affect the film-cooling performance along the endwall. An experimental investigation was conducted to study the effect of surface deposition on film-cooling along the pressure side of a first-stage turbine vane endwall. A large-scale wind tunnel with a turbine vane cascade was used to perform the experiments. The vane endwall was cooled by an array of film-cooling holes along the pressure side of the airfoil. Deposits having a semi-elliptical shape were placed along the pressure side to simulate individual row and multiple row depositions. Results indicated that the deposits lowered the average adiabatic effectiveness levels downstream of the film-cooling rows by deflecting the coolant jets towards the vane endwall junction on the pressure side. Results also indicated that there was a steady decrease in adiabatic effectiveness with a sequential increase in the number of rows with the deposits.


Author(s):  
Robert J. Boyle ◽  
Louis M. Russell

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.


Author(s):  
Hanno Gottschalk ◽  
Marco Reese

AbstractA simple multi-physical system for the potential flow of a fluid through a shroud, in which a mechanical component, like a turbine vane, is placed, is modeled mathematically. We then consider a multi-criteria shape optimization problem, where the shape of the component is allowed to vary under a certain set of second-order Hölder continuous differentiable transformations of a baseline shape with boundary of the same continuity class. As objective functions, we consider a simple loss model for the fluid dynamical efficiency and the probability of failure of the component due to repeated application of loads that stem from the fluid’s static pressure. For this multi-physical system, it is shown that, under certain conditions, the Pareto front is maximal in the sense that the Pareto front of the feasible set coincides with the Pareto front of its closure. We also show that the set of all optimal forms with respect to scalarization techniques deforms continuously (in the Hausdorff metric) with respect to preference parameters.


Author(s):  
R. Puente ◽  
G. Paniagua ◽  
T. Verstraete

A multi-objective optimization procedure is applied to the 3D design of a transonic turbine vane row, considering efficiency and stator outlet pressure distortion, which is directly related to induced rotor forcing. The characteristic features that define different individuals along the Pareto Front are described, analyzing the differences between high efficiency airfoils and low interaction. Pressure distortion is assessed by means of a model that requires only of the computation the steady flow field in the domain of the stator. The reduction of aerodynamic rotor forcing is checked via unsteady multistage aerodynamic computations. A well known loss prediction method is used to drive the efficiency of one optimization run, while CFD analysis is used for another, in order to assess the reliability of both methods. In both cases, the decomposition of total losses is performed to quantify the influence on efficiency of reducing rotor forcing. Results show that when striving for efficiency, the rotor is affected by few, but intense shocks. On the other hand, when the objective is the minimization of distortion, multiple shocks will appear.


2008 ◽  
Vol 17 (7) ◽  
pp. 527-531 ◽  
Author(s):  
Erica C. Teixeira ◽  
Jeffrey R. Piascik ◽  
Brian R. Stoner ◽  
Jeffrey Y. Thompson

Sign in / Sign up

Export Citation Format

Share Document