scholarly journals An Analytical Study in Multi-physics and Multi-criteria Shape Optimization

Author(s):  
Hanno Gottschalk ◽  
Marco Reese

AbstractA simple multi-physical system for the potential flow of a fluid through a shroud, in which a mechanical component, like a turbine vane, is placed, is modeled mathematically. We then consider a multi-criteria shape optimization problem, where the shape of the component is allowed to vary under a certain set of second-order Hölder continuous differentiable transformations of a baseline shape with boundary of the same continuity class. As objective functions, we consider a simple loss model for the fluid dynamical efficiency and the probability of failure of the component due to repeated application of loads that stem from the fluid’s static pressure. For this multi-physical system, it is shown that, under certain conditions, the Pareto front is maximal in the sense that the Pareto front of the feasible set coincides with the Pareto front of its closure. We also show that the set of all optimal forms with respect to scalarization techniques deforms continuously (in the Hausdorff metric) with respect to preference parameters.

2019 ◽  
Vol 16 (5) ◽  
pp. 670-680
Author(s):  
Majid Pouraminian ◽  
Somayyeh Pourbakhshian

Purpose This paper aims to study the shape of the concrete arched bridge by particle swarm optimization algorithm. Design/methodology/approach Finite element model of open-spandrel concrete arch bridges was constructed using a number of parameters. Design variables of optimization problem include height of skewback abutment, height of arch crown, position of crown with respect to global axes and left and right radius of up and down arches. After parametric modeling of bridge geometry and application of multi-objective particle swarm optimization, the shape optimization of bridge arch was determined. The concrete volume used in bridge substructure construction and maximum principal tensile stress of concrete arch body was adopted as two objective functions in this study. The optimization problem aims to minimize the two objective functions. Geometric and stress constraints are also included in the problem. Findings Based on the results presented in the paper, the Pareto front is generated which helps the decision-maker or designer to pick the compromise solution from among 20 optimum designs according to their subjective preferences or engineering judgment, respectively. Moreover, to help the decision-maker, the two multiple objective decision-making methods were used for selection of the best solution from among nondominated solutions. Originality/value This research aims to solve an interesting optimization problem in structural engineering. Optimization of arch bridges structure was done for reducing construction costs and increasing safety for the first time.


Author(s):  
Muhammad Ansab Ali ◽  
Tariq S. Khan ◽  
Saqib Salam ◽  
Ebrahim Al Hajri

To minimize the computational and optimization time, a numerical simulation of 3D microchannel heat sink was performed using surrogate model to achieve the optimum shape. Latin hypercube sampling method was used to explore the design space and to construct the model. The accuracy of the model was evaluated using statistical methods like coefficient of multiple determinations and root mean square error. Thermal resistance and pressure drop being conflicting objective functions were selected to optimize the geometric parameters of the microchannel. Multi objective shape optimization of design was conducted using genetic algorithm and the optimum design solutions are presented in the Pareto front. The application of the surrogate methods has predicted the performance of the heat sink with the sufficient accuracy employing significantly lower computational resources.


Author(s):  
M. Bremicker ◽  
H. Eschenauer

Abstract The range of application of structural optimization methods can be considerably enlarged by using decomposition techniques. In this paper a novel procedure is introduced to deal with such problems more efficiently. The mechanical structure resp. system is divided into several subsystems splitting up the design variables, objective functions, and constraints accordingly. The boundary state quantities of the subsystems and the global (i.e. subsystem overlapping) functions are approximated by a sensitivity analysis of the entire system using suitable approximation concepts. It is thus possible to optimize the subsystems independently. Variables, objective functions and constraints can be chosen arbitrarily; all coupling information is obtained from the sensitivity analysis by means of global information. The application of this technique is demonstrated by a two-dimensional shape optimization problem.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


2021 ◽  
Vol 13 (2) ◽  
pp. 973
Author(s):  
Gigel Paraschiv ◽  
Georgiana Moiceanu ◽  
Gheorghe Voicu ◽  
Mihai Chitoiu ◽  
Petru Cardei ◽  
...  

Our paper presents the hammer mill working process optimization problem destined for milling energetic biomass (MiscanthusGiganteus and Salix Viminalis). For the study, functional and constructive parameters of the hammer mill were taken into consideration in order to reduce the specific energy consumption. The energy consumption dependency on the mill rotor spinning frequency and on the sieve orifices in use, as well as on the material feeding flow, in correlation with the vegetal biomass milling degree was the focus of the analysis. For obtaining this the hammer mill was successively equipped with 4 different types of hammers that grind the energetic biomass, which had a certain humidity content and an initial degree of reduction ratio of the material. In order to start the optimization process of hammer mill working process, 12 parameters were defined. The objective functions which minimize hammer mill energy consumption and maximize the milled material percentage with a certain specific granulation were established. The results obtained can serve as the basis for choosing the optimal working, constructive, and functional parameters of hammer mills in this field, and for a better design of future hammer mills.


Author(s):  
Johanna Schultes ◽  
Michael Stiglmayr ◽  
Kathrin Klamroth ◽  
Camilla Hahn

AbstractIn engineering applications one often has to trade-off among several objectives as, for example, the mechanical stability of a component, its efficiency, its weight and its cost. We consider a biobjective shape optimization problem maximizing the mechanical stability of a ceramic component under tensile load while minimizing its volume. Stability is thereby modeled using a Weibull-type formulation of the probability of failure under external loads. The PDE formulation of the mechanical state equation is discretized by a finite element method on a regular grid. To solve the discretized biobjective shape optimization problem we suggest a hypervolume scalarization, with which also unsupported efficient solutions can be determined without adding constraints to the problem formulation. FurthIn this section, general properties of the hypervolumeermore, maximizing the dominated hypervolume supports the decision maker in identifying compromise solutions. We investigate the relation of the hypervolume scalarization to the weighted sum scalarization and to direct multiobjective descent methods. Since gradient information can be efficiently obtained by solving the adjoint equation, the scalarized problem can be solved by a gradient ascent algorithm. We evaluate our approach on a 2 D test case representing a straight joint under tensile load.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


Author(s):  
Zijian Guo ◽  
Tanghong Liu ◽  
Wenhui Li ◽  
Yutao Xia

The present work focuses on the aerodynamic problems resulting from a high-speed train (HST) passing through a tunnel. Numerical simulations were employed to obtain the numerical results, and they were verified by a moving-model test. Two responses, [Formula: see text] (coefficient of the peak-to-peak pressure of a single fluctuation) and[Formula: see text] (pressure value of micro-pressure wave), were studied with regard to the three building parameters of the portal-hat buffer structure of the tunnel entrance and exit. The MOPSO (multi-objective particle swarm optimization) method was employed to solve the optimization problem in order to find the minimum [Formula: see text] and[Formula: see text]. Results showed that the effects of the three design parameters on [Formula: see text] were not monotonous, and the influences of[Formula: see text] (the oblique angle of the portal) and [Formula: see text] (the height of the hat structure) were more significant than that of[Formula: see text] (the angle between the vertical line of the portal and the hat). Monotonically decreasing responses were found in [Formula: see text] for [Formula: see text] and[Formula: see text]. The Pareto front of [Formula: see text] and[Formula: see text]was obtained. The ideal single-objective optimums for each response located at the ends of the Pareto front had values of 1.0560 for [Formula: see text] and 101.8 Pa for[Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document