Conversion of blackbody radiation into laser energy

1982 ◽  
Author(s):  
R. MCINVILLE ◽  
H. HASSAN
2020 ◽  
Vol 27 (1) ◽  
pp. 1-4
Author(s):  
Fatan Abshari ◽  
Zulfikar Ali

Objective: Transurethral lithotripsy using Holmium-YAG laser has been reported to be beneficial in breaking up bladder stones with large size (>4cm in diameter) with lower risk of mucosal injury and hematuria. The aim of this study is to evaluate the utilization of Holmium-YAG laser for the management of bladder stones at Kardinah General Hospital, Tegal. Material & Methods: This is a cross-sectional study conducted from January 2017 to March 2017. Patient’s demography, which included age, sex, length of surgery, stone size, and laser’s energy count were recorded. Results: We included 120 patients in this study. Mean of patients age in this study was 51.93 years old with age range were 41-85 years old. Most of the patients were male (109 vs 11) with a mean size of stone 25.09 ± 3.04 mm. Length of surgery ranges from 15 to 75 minutes and mean energy of the laser 28.99 ± 19.34 kJ. There was 100% stone’s clearance following surgery with no major complication occurred. Conclusion: Holmium-YAG laser is effective in managing bladder stones at Kardinah General Hospital particularly for large size stones. Length of surgery and energy of laser used depend on the stone size in which bigger stone size is associated with longer surgery time and bigger laser energy needed.


2013 ◽  
Vol 58 (2) ◽  
pp. 122-125 ◽  
Author(s):  
O.V. Gnatovskyy ◽  
◽  
A.M. Negriyko ◽  
V.O. Gnatovskyy ◽  
A.V. Sidorenko ◽  
...  

2018 ◽  
Author(s):  
Chun Haur Khoo

Abstract Driven by the cost reduction and miniaturization, Wafer Level Chip Scale Packaging (WLCSP) has experienced significant growth mainly driven by mobile consumer products. Depending on the customers or manufacturing needs, the bare silicon backside of the WLCSP may be covered with a backside laminate layer. In the failure analysis lab, in order to perform the die level backside fault isolation technique using Photon Emission Microscope (PEM) or Laser Signal Injection Microscope (LSIM), the backside laminate layer needs to be removed. Most of the time, this is done using the mechanical polishing method. This paper outlines the backside laminate removal method of WLCSP using a near infrared (NIR) laser that produces laser energy in the 1,064 nm range. This method significantly reduces the sample preparation time and also reduces the risk of mechanical damage as there is no application of mechanical force. This is an effective method for WLCSP mounted on a PCB board.


2020 ◽  
Vol 1 (2) ◽  
pp. 5-8
Author(s):  
Komang Gde Suastika, Heri Suyanto, Gunarjo, Sadiana, Darmaji

Abstract - Laser-Induced Breakdown Spectroscopy (LIBS) is one method of atomic emission spectroscopy using laser ablation as an energy source. This method is used to characterize the type of amethysts that originally come from Sukamara, Central Kalimantan. The result of amethyst characterization can be used as a reference for claiming the natural wealth of the amethyst. The amethyst samples are directly taken from the amethyst mining field in the District Gem Amethyst and consist of four color variations: white, black, yellow, and purple. These samples were analyzed by LIBS, using laser energy of 120 mJ, delay time detection of 2 μs and accumulation of 3, with and without cleaning. The purpose of this study is to determine emission spectra characteristics, contained elements, and physical characteristics of each amethyst sample. The spectra show that the amethyst samples contain some elements such as Al, Ca, K, Fe, Gd, Ba, Si, Be, H, O, N, Cl and Pu with various emission intensities. The value of emission intensity corresponds to concentration of element in the sample. Hence, the characteristics of the amethysts are based on their concentration value. The element with the highest concentration in all samples is Si, which is related to the chemical formula of SiO2. The element with the lowest concentration in all samples is Ca that is found in black and yellow amethysts. The emission intensity of Fe element can distinguish between white, purple, and yellow amethyst. If Fe emission intensity is very low, it indicates yellow sample. Thus, we may conclude that LIBS is a method that can be used to characterize the amethyst samples.Key words: amethyst, impurity, laser-induced, breakdown spectroscopy, characteristic, gemstones


2011 ◽  
Vol 26 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Zan-Hong DENG ◽  
Xiao-Dong FANG ◽  
Ru-Hua TAO ◽  
Wei-Wei DONG ◽  
Shu ZHOU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document