Laminar separation from airfoils beyond trailing-edge stall

Author(s):  
H. CHENG
2015 ◽  
Vol 780 ◽  
pp. 167-191 ◽  
Author(s):  
S. Pröbsting ◽  
S. Yarusevych

The subject of this experimental study is the feedback effects due to tonal noise emission in a laminar separation bubble (LSB) formed on the suction side of an airfoil in low Reynolds number flows. Experiments were performed on a NACA 0012 airfoil for a range of chord-based Reynolds numbers $0.65\times 10^{5}\leqslant \mathit{Re}_{c}\leqslant 4.5\times 10^{5}$ at angle of attack ${\it\alpha}=2^{\circ }$, where laminar boundary layer separation is encountered on both sides of the airfoil. Simultaneous time-resolved, two-component particle image velocimetry (PIV) measurements, unsteady surface pressure and far-field acoustic pressure measurements were employed to characterize flow development and acoustic emissions. Amplification of disturbances in separated shear layers on both the suction and pressure sides of the airfoil leads to shear layer roll-up and shedding of vortices from separation bubbles. When the vortices do not break up upstream of the trailing edge, the passage of these structures over the trailing edge generates tonal noise. Acoustic feedback between the trailing edge noise source and the upstream separation bubble narrows the frequency band of amplified disturbances, effectively locking onto a particular frequency. Acoustic excitation further results in notable changes to the overall separation bubble characteristics. Roll-up vortices forming on the pressure side, where the bubble is located closer to the trailing edge, are shown to define the characteristic frequency of pressure fluctuations, thereby affecting the disturbance spectrum on the suction side. However, when the bubble on the pressure side is suppressed via boundary layer tripping, a weaker feedback effect is also observed on the suction side. The results give a detailed quantitative description of the observed phenomenon and provide a new outlook on the role of coherent structures in separation bubble dynamics and trailing edge noise generation.


2021 ◽  
Vol 11 (5) ◽  
pp. 2257 ◽  
Author(s):  
Lap Nguyen ◽  
Vladimir Golubev ◽  
Reda Mankbadi ◽  
Gyuzel Yakhina ◽  
Michel Roger

A high-fidelity computational analysis carefully validated against concurrently obtained experimental results is employed to examine self-noise radiation of airfoils at transitional flow regimes, with a focus on elucidating the connection between the unsteady behavior of the laminar separation bubble (LSB) and the acoustic feedback-loop (AFL) resonant interactions observed in the airfoil boundary layers. The employed parametric study examines AFL sensitivity to the changes in the upstream flow conditions and the airfoil loading. Implicit Large-Eddy Simulations are performed for a NACA-0012 airfoil in selected transitional-flow regimes for which experimental measurements recorded characteristic multiple-tone acoustic spectra with a dual ladder-type frequency structure. The switch between the tone-producing and no-tone-producing regimes is traced to the LSB size and position as a function of the flow Reynolds number and the airfoil angle of attack, and further substantiated by the linear stability analysis. The results indicate a strong multi-tonal airfoil noise radiation associated with the AFL and attributed to the switch from the slowly-growing Tollmien–Schlichting to the fast-growing Kelvin–Helmholtz instabilities occurring in thin LSB regions when those are localized near the trailing-edge (TE) on either side of the airfoil. Such a process eventually results in the nonlinearly saturated flapping vortical modes (“rollers”) that scatter into acoustic waves at the TE.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4958
Author(s):  
Ayman Mohamed ◽  
David Wood ◽  
Jeffery Pieper

This article describes the development and testing of a modified, semi-empirical ONERA dynamic stall model for an airfoil with a trailing edge flap—a “smart airfoil”—pitching at reduced frequencies up to 0.1. The Reynolds number is 105. The model reconstructs the load fluctuations associated with the shedding of multiple dynamic stall vortices (DSVs) in a time-marching solution, which makes it suitable for real-time control of a trailing edge flap (TEF). No other model captures the effect of the DSVs on the aerodynamic loads on smart airfoils. The model was refined and tuned for force measurements on a smart NACA 643-618 airfoil model that was pitching with an inactive TEF and was validated against the measurements when the TEF was activated. A substantial laminar separation bubble can develop on this airfoil, which is challenging for modelers of the unsteady response. A closed-loop controller was designed offline in SIMULINK, and the output of the controller was applied to the TEF in a wind tunnel. The results indicated that the model has a comparable accuracy for predicting loads with the active TEF compared to inactive TEF loads. In the fully separated flow regime, the controller performed worse when dealing with the development of the laminar separation bubble and DSVs.


2010 ◽  
Vol 648 ◽  
pp. 257-296 ◽  
Author(s):  
L. E. JONES ◽  
R. D. SANDBERG ◽  
N. D. SANDHAM

Stability characteristics of aerofoil flows are investigated by linear stability analysis of time-averaged velocity profiles and by direct numerical simulations with time-dependent forcing terms. First the wake behind an aerofoil is investigated, illustrating the feasibility of detecting absolute instability using these methods. The time-averaged flow around an NACA-0012 aerofoil at incidence is then investigated in terms of its response to very low-amplitude hydrodynamic and acoustic perturbations. Flow fields obtained from both two- and three-dimensional simulations are investigated, for which the aerofoil flow exhibits a laminar separation bubble. Convective stability characteristics are documented, and the separation bubble is found to exhibit no absolute instability in the classical sense; i.e. no growing disturbances with zero group velocity are observed. The flow is however found to be globally unstable via an acoustic-feedback loop involving the aerofoil trailing edge as a source of acoustic excitation and the aerofoil leading-edge region as a site of receptivity. Evidence suggests that the feedback loop may play an important role in frequency selection of the vortex shedding that occurs in two dimensions. Further simulations are presented to investigate the receptivity process by which acoustic waves generate hydrodynamic instabilities within the aerofoil boundary layer. The dependency of the receptivity process to both frequency and source location is quantified. It is found that the amplitude of trailing-edge noise in the fully developed simulation is sufficient to promote transition via leading-edge receptivity.


2020 ◽  
Vol 21 (6) ◽  
pp. 621
Author(s):  
Veerapathiran Thangaraj Gopinathan ◽  
John Bruce Ralphin Rose ◽  
Mohanram Surya

Aerodynamic efficiency of an airplane wing can be improved either by increasing its lift generation tendency or by reducing the drag. Recently, Bio-inspired designs have been received greater attention for the geometric modifications of airplane wings. One of the bio-inspired designs contains sinusoidal Humpback Whale (HW) tubercles, i.e., protuberances exist at the wing leading edge (LE). The tubercles have excellent flow control characteristics at low Reynolds numbers. The present work describes about the effect of tubercles on swept back wing performance at various Angle of Attack (AoA). NACA 0015 and NACA 4415 airfoils are used for swept back wing design with sweep angle about 30°. The modified wings (HUMP 0015 A, HUMP 0015 B, HUMP 4415 A, HUMP 4415 B) are designed with two amplitude to wavelength ratios (η) of 0.1 & 0.24 for the performance analysis. It is a novel effort to analyze the tubercle vortices along the span that induce additional flow energy especially, behind the tubercles peak and trough region. Subsequently, Co-efficient of Lift (CL), Co-efficient of Drag (CD) and boundary layer pressure gradients also predicted for modified and baseline (smooth LE) models in the pre & post-stall regimes. It was observed that the tubercles increase the performance of swept back wings by the enhanced CL/CD ratio in the pre-stall AoA region. Interestingly, the flow separation region behind the centerline of tubercles and formation of Laminar Separation Bubbles (LSB) were asymmetric because of the sweep.


Sign in / Sign up

Export Citation Format

Share Document