Computation of the flow field in an annular gas turbine combustor

Author(s):  
MICHAEL CLINE ◽  
JOHN DEUR ◽  
GERALD MICKLOW ◽  
MICHAEL HARPER ◽  
KRISHNA KUNDU
2012 ◽  
Vol 510 ◽  
pp. 545-548
Author(s):  
Liang Yu ◽  
Shu Sheng Yuan ◽  
Zhi Bing Pang ◽  
Yun Liang Wang

RNG (Renormalization Group) k-ε turbulent model was applied to the numerical simulation of turbulent mixing processes in the RQL gas turbine combustor, and SIMPLE algorithm was used to solve the finite difference equations. The calculated conclusions were used to analyze temperature distribution of the mixed flow field and near-wall region of the flow field, and then discuss the NOx emissions. The results show that the effect of the injector zone geometry and the jet to crossflow momentum flux ratios on the NOx emissions is obvious. The reasonable control of jet is beneficial to reduce the local high temperature area and is able to improve the distribution of the exit temperature. And then achieve the goal of reducing the environmental pollution.


2015 ◽  
Vol 32 (2) ◽  
Author(s):  
R. K. Mishra ◽  
S. Kishore Kumar ◽  
Sunil Chandel

AbstractLean blow out characteristics in a swirl stabilized aero gas turbine combustor have been studied using computational fluid dynamics. For CFD analysis, a 22.5° sector of an annular combustor is modeled using unstructured tetrahedral meshes comprising 1.2 × 10


Author(s):  
Thomas Hofmeister ◽  
Thomas Sattelmayer

Abstract This paper presents numerical investigations of the amplitude-dependent stability behavior of thermoacoustic oscillations at screech level frequencies in a lean-premixed, swirl-stabilized, lab-scale gas turbine combustor. A hybrid Computational Fluid Dynamics / Computational AeroAcoustics (CFD / CAA) approach is applied to individually compute thermoacoustic damping and driving rates for various acoustic amplitude levels at the combustors' first transversal (T1) eigenfrequency. Forced CFD simulations with the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations mimic the real combustor's rotating T1 eigenmode. An increase of the forcing amplitude over time allows observation of the amplitude-dependent flow field and flame evolution. In accordance with measured OH*-chemiluminescence images, a pulsation amplitude-dependent flame contraction is reproduced in the CFD simulations. At several amplitude levels, period-averaged flow fields are then denoted as reference states, which serve as inputs for the CAA part. There, eigenfrequency simulations with linearized flow equations are performed with the Finite Element Method (FEM). The outcomes are damping and driving rates as a response to the amplitude-dependency of the mean flow field. It is found that driving due to flame-acoustics interactions governs a weak amplitude-dependency, which agrees with experimentally based studies at the authors' institute. This disqualifies the perception of heat release saturation as the root-cause for limit-cycle oscillations in this high-frequency thermoacoustic system. Instead, significantly increased dissipation due to the interaction of acoustically induced vorticity perturbations with the mean flow is identified, which may explain the formation of a limit-cycle.


Author(s):  
K. Sudhakar Reddy ◽  
D. N. Reddy ◽  
C. M. Vara Prasad

An experimental work was carried out on confined swirling flows under non-combusting conditions in a reverse flow annular gas turbine combustor. Flow measurements with a five hole pitot probe are carried out in a flow apparatus of a geometrical configuration similar to the model of a swirl combustor. Mean flow results are obtained for different flow conditions to determine the effect of swirl on the recirculation zone and the variation of the swirl strength along the axis of the gas turbine combustion chamber. The boundaries of the recirculation region are plotted to compare the size and length of the zone with various swirlers. Minimum flow Reynolds number is required for flow recirculation; the effect of Reynolds number on determining which flow class is present for flow of interest in combustion chamber was investigated. The inlet swirl number is optimized for higher swirl strength and the inlet swirl number for which recirculation completely vanishes is also estimated.


Sign in / Sign up

Export Citation Format

Share Document