scholarly journals Steady Vortex Breakdown in Swirling Flow Inside a Closed Container: Numerical Simulations, PIV and LDV Measurements

2008 ◽  
Vol 2 (1) ◽  
pp. 69-74 ◽  
Author(s):  
J. M.M. Sousa
2020 ◽  
Vol 32 (12) ◽  
pp. 125118
Author(s):  
Yazhou Shen ◽  
Mohamad Ghulam ◽  
Kai Zhang ◽  
Ephraim Gutmark ◽  
Christophe Duwig

1967 ◽  
Vol 89 (3) ◽  
pp. 609-615
Author(s):  
Turgut Sarpkaya

The results of an experimental study of the forced and periodic breakdown of a confined vortex rotating in the opposite direction are presented. The vortex tube consists of two chambers connected by a short conduit through streamlined transitions. The upstream end is closed by a plain wall, and a circular orifice is provided at the downstream end. The swirling flow and the breaker-vortex are generated by introducing varying proportions of air or water through tangential ports located near the upstream and downstream walls of the unit. The cases of single breakdown and periodic breakdown are explored and typical data are presented for each case. Finally, the pros and cons of the two existing transition theories are discussed.


2001 ◽  
Vol 17 (3) ◽  
pp. 131-138
Author(s):  
Feng Chin Tsai ◽  
Rong Fung Huang

AbstractThe effects of blockage and swirl on the macro flow structures of the annular jet past a circular disc are experimentally studied through the time-averaged streamline patterns. In the blockage-effect regime, the flows present multiple modes, single bubble, dual rings, vortex breakdown, and triple rings, in different regimes of blockage ratio and swirl number. The topological models of the flow structures are proposed and discussed according to the measured flow fields to manifest the complex flow structures. The single bubble is a closed recirculation bubble with a stagnation point on the central axis. The dual-ring flow is an open-top recirculsation zone, in which a pair of counter-rotating vortex rings exists in the near wake. The fluids in the dual rings are expelled downstream through a central jet-like swirling flow. A vortex breakdown may occur in the central jet-like swirling flow if the exit swirl number exceeds critical values. When the vortex breakdown interacts with the dual rings, a complex triple-ring flow structure forms. Axial distributions of the local swirl number are presented and discussed. The local swirl number increases with the increase of the exit swirl number and attains the maximum in the dual-ring mode. At large exit swirl numbers where the vortex breakdown occurs, the local swirl number decreases drastically to a low value.


1997 ◽  
Author(s):  
Ashish Nedungadi ◽  
Mark Lewis ◽  
Ashish Nedungadi ◽  
Mark Lewis

2012 ◽  
Vol 699 ◽  
pp. 216-262 ◽  
Author(s):  
Philippe Meliga ◽  
François Gallaire ◽  
Jean-Marc Chomaz

AbstractGlobal linear and nonlinear bifurcation analysis is used to revisit the spiral vortex breakdown of nominally axisymmetric swirling jets. For the parameters considered herein, stability analyses single out two unstable linear modes of azimuthal wavenumber $m= \ensuremath{-} 1$ and $m= \ensuremath{-} 2$, bifurcating from the axisymmetric breakdown solution. These modes are interpreted in terms of spiral perturbations wrapped around and behind the axisymmetric bubble, rotating in time in the same direction as the swirling flow but winding in space in the opposite direction. Issues are addressed regarding the role of these modes with respect to the existence, mode selection and internal structure of vortex breakdown, as assessed from the three-dimensional direct numerical simulations of Ruith et al. (J. Fluid Mech., vol. 486, 2003, pp. 331–378). The normal form describing the leading-order nonlinear interaction between modes is computed and analysed. It admits two stable solutions corresponding to pure single and double helices. At large swirl, the axisymmetric solution bifurcates to the double helix which remains the only stable solution. At low and moderate swirl, it bifurcates first to the single helix, and subsequently to the double helix through a series of subcritical bifurcations yielding hysteresis over a finite range of Reynolds numbers, the estimated bifurcation threshold being in good agreement with that observed in the direct numerical simulations. Evidence is provided that this selection is not to be ascribed to classical mean flow corrections induced by the existence of the unstable modes, but to a non-trivial competition between harmonics. Because the frequencies of the leading modes approach a strong $2$:$1$ resonance, an alternative normal form allowing interactions between the $m= \ensuremath{-} 2$ mode and the first harmonics of the $m= \ensuremath{-} 1$ mode is computed and analysed. It admits two stable solutions, the double helix already identified in the non-resonant case, and a single helix differing from that observed in the non-resonant case only by the presence of a slaved, phase-locked harmonic deformation. On behalf of the finite departure from the $2$:$1$ resonance, the amplitude of the slaved harmonic is however low, and the effect of the resonance on the bifurcation structure is merely limited to a reduction of the hysteresis range.


Author(s):  
M. Berrino ◽  
D. Lengani ◽  
F. Satta ◽  
M. Ubaldi ◽  
P. Zunino ◽  
...  

The present paper is focused on the investigation of the dynamics of the flow downstream of an Ultra Low NOx (ULN) injection system, designed to reduce NOx emissions and combustor axial length. Two rectangular flame tubes have been experimentally investigated: one aimed at simulating an unconfined exit flow, and another with the same transverse dimensions of the combustor annular sector, to simulate the confined flow field. The effects induced by the realistic flame tube presence are investigated comparing the flow field with that generated in the unconfined case. Particular attention is paid to the vortex breakdown phenomena associated with the flow generated by the two co-rotating swirlers constituting the injection system. Two different and complementary measurement techniques have been adopted to characterize the aerodynamics of the vortex breakdown. The hot-wire investigation results reveal the frequencies associated with the precession motion due to the vortex breakdown. The Particle Image Velocimetry technique has been coupled with Proper Orthogonal Decomposition (POD) for data post-processing in order to reconstruct the swirling motion generated by the injection system. The property of POD, which consists of splitting temporal from spatial information of the flow field in analysis, allows the distinction between deterministic and random fluctuations without the need of an external trigger signal. This feature is fundamental for the better understanding of an highly-swirling flow.


2017 ◽  
Vol 819 ◽  
pp. 678-712 ◽  
Author(s):  
Zvi Rusak ◽  
Yuxin Zhang ◽  
Harry Lee ◽  
Shixiao Wang

The dynamics of inviscid-limit, incompressible and axisymmetric swirling flows in finite-length, diverging or contracting, long circular pipes is studied through global analysis techniques and numerical simulations. The inlet flow is described by the profiles of the circumferential and axial velocity together with a fixed azimuthal vorticity while the outlet flow is characterized by a state with zero radial velocity. A mathematical model that is based on the Squire–Long equation (SLE) is formulated to identify steady-state solutions of the problem with special conditions to describe states with separation zones. The problem is then reduced to the columnar (axially-independent) SLE, with centreline and wall conditions for the solution of the outlet flow streamfunction. The solution of the columnar SLE problem gives rise to the existence of four types of solutions. The SLE problem is then solved numerically using a special procedure to capture states with vortex-breakdown or wall-separation zones. Numerical simulations based on the unsteady vorticity circulation equations are also conducted and show correlation between time-asymptotic states and steady states according to the SLE and the columnar SLE problems. The simulations also shed light on the stability of the various steady states. The uniqueness of steady-state solutions in a certain range of swirl is proven analytically and demonstrated numerically. The computed results provide the bifurcation diagrams of steady states in terms of the incoming swirl ratio and size of pipe divergence or contraction. Critical swirls for the first appearance of the various types of states are identified. The results show that pipe divergence promotes the appearance of vortex-breakdown states at lower levels of the incoming swirl while pipe contraction delays the appearance of vortex breakdown to higher levels of swirl and promotes the formation of wall-separation states.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


1998 ◽  
Vol 366 ◽  
pp. 211-237 ◽  
Author(s):  
Z. RUSAK ◽  
S. WANG ◽  
C. H. WHITING

The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown is studied through numerical computations. These unique simulations are guided by a recent rigorous theory on this subject presented by Wang & Rusak (1997a). Using the unsteady and axisymmetric Euler equations, the nonlinear dynamics of both small- and large-amplitude disturbances in a swirling flow are described and the transition to axisymmetric breakdown is demonstrated. The simulations clarify the relation between our linear stability analyses of swirling flows (Wang & Rusak 1996a, b) and the time-asymptotic behaviour of the flow as described by steady-state solutions of the problem presented in Wang & Rusak (1997a). The numerical calculations support the theoretical predictions and shed light on the mechanism leading to the breakdown process in swirling flows. It has also been demonstrated that the fundamental characteristics which lead to vortex instability and breakdown in high-Reynolds-number flows may be calculated from considerations of a single, reduced-order, nonlinear ordinary differential equation, representing a columnar flow problem. Necessary and sufficient criteria for the onset of vortex breakdown in a Burgers vortex are presented.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
P. N. Shah ◽  
D. D. Mobed ◽  
Z. S. Spakovszky

A novel air-brake concept for next-generation, low-noise civil aircraft is introduced. Deployment of such devices in clean airframe configuration can potentially reduce aircraft source noise and noise propagation to the ground. The generation of swirling outflow from a duct, such as an aircraft engine, is demonstrated to have high drag and low noise. The simplest configuration is a ram pressure-driven duct with stationary swirl vanes, a so-called swirl tube. A detailed aerodynamic design is performed using first principles based modeling and high-fidelity numerical simulations. The swirl-drag-noise relationship is quantified through scale-model aerodynamic and aeroacoustic wind tunnel tests. The maximum measured stable flow drag coefficient is 0.83 at exit swirl angles close to 50 deg. The acoustic signature, extrapolated to full-scale, is found to be well below the background noise of a well-populated area. Vortex breakdown is found to be the aerodynamically and acoustically limiting phenomenon, generating a white-noise signature that is about 15 dB louder than a stable swirling flow.


Sign in / Sign up

Export Citation Format

Share Document