Radial distribution of jet noise sources using far-field microphones

Author(s):  
Marcus Harper-Bourne
Author(s):  
Gary G. Podboy

An experiment was conducted to investigate the effect that a planar surface located near a jet flow has on the noise radiated to the far-field. Two different configurations were tested: 1) a shielding configuration in which the surface was located between the jet and the far-field microphones, and 2) a reflecting configuration in which the surface was mounted on the opposite side of the jet, and thus the jet noise was free to reflect off the surface toward the microphones. Both conventional far-field microphone and phased array noise source localization measurements were obtained. This paper discusses phased array results, while a companion paper discusses far-field results. The phased array data show that the axial distribution of noise sources in a jet can vary greatly depending on the jet operating condition and suggests that it would first be necessary to know or be able to predict this distribution in order to be able to predict the amount of noise reduction to expect from a given shielding configuration. The data obtained on both subsonic and supersonic jets show that the noise sources associated with a given frequency of noise tend to move downstream, and therefore, would become more difficult to shield, as jet Mach number increases. The noise source localization data obtained on cold, shock-containing jets suggests that the constructive interference of sound waves that produces noise at a given frequency within a broadband shock noise hump comes primarily from a small number of shocks, rather than from all the shocks at the same time. The reflecting configuration data illustrates that the law of reflection must be satisfied in order for jet noise to reflect off of a surface to an observer, and depending on the relative locations of the jet, the surface, and the observer, only some of the jet noise sources may satisfy this requirement.


2008 ◽  
Vol 615 ◽  
pp. 253-292 ◽  
Author(s):  
CHRISTOPHER K. W. TAM ◽  
K. VISWANATHAN ◽  
K. K. AHUJA ◽  
J. PANDA

The primary objective of this investigation is to determine experimentally the sources of jet mixing noise. In the present study, four different approaches are used. It is reasonable to assume that the characteristics of the noise sources are imprinted on their radiation fields. Under this assumption, it becomes possible to analyse the characteristics of the far-field sound and then infer back to the characteristics of the sources. The first approach is to make use of the spectral and directional information measured by a single microphone in the far field. A detailed analysis of a large collection of far-field noise data has been carried out. The purpose is to identify special characteristics that can be linked directly to those of the sources. The second approach is to measure the coherence of the sound field using two microphones. The autocorrelations and cross-correlations of these measurements offer not only valuable information on the spatial structure of the noise field in the radial and polar angle directions, but also on the sources inside the jet. The third approach involves measuring the correlation between turbulence fluctuations inside a jet and the radiated noise in the far field. This is the most direct and unambiguous way of identifying the sources of jet noise. In the fourth approach, a mirror microphone is used to measure the noise source distribution along the lengths of high-speed jets. Features and trends observed in noise source strength distributions are expected to shed light on the source mechanisms. It will be shown that all four types of data indicate clearly the existence of two distinct noise sources in jets. One source of noise is the fine-scale turbulence and the other source is the large turbulence structures of the jet flow. Some of the salient features of the sound field associated with the two noise sources are reported in this paper.


Author(s):  
T. Ishii ◽  
H. Oinuma ◽  
K. Nagai ◽  
N. Tanaka ◽  
Y. Oba ◽  
...  

This paper describes an experimental study on a notched nozzle for jet noise reduction. The notch, a tiny tetrahedral dent formed at the edge of a nozzle, is expected to enhance mixing within a limited region downstream of the nozzle. The enhanced mixing leads to the suppression of broadband peak components of jet noise with little effect on the engine performance. To investigate the noise reduction performances of a six-notch nozzle, a series of experiments have been performed at an outdoor test site. Tests on the engine include acoustic measurement in the far field to evaluate the noise reduction level with and without the notched nozzle, and pressure measurement near the jet plume to obtain information on noise sources. The far-field measurement indicated the noise reduction by as much as 3 dB in terms of overall sound pressure level in the rear direction of the engine. The use of the six-notch nozzle though decreased the noise-benefit in the side direction. Experimental data indicate that the high-frequency components deteriorate the noise reduction performance at wider angles of radiation. Although the increase in noise is partly because of the increase in velocity, the penetration of the notches into the jet plume is attributed to the increase in sound pressure level in higher frequencies. The results of near-field measurement suggest that an additional sound source appears up to x/D = 4 due to the notches. In addition, the total pressure maps downstream of the nozzle edge, obtained using a pressure rake, show that the notched nozzle deforms the shape of the mixing layer, causing it to become wavy within a limited distance from the nozzle. This deformation of the mixing layer implies strong vortex shedding and thus additional noise sources. To improve the noise characteristics, we proposed a revised version of the nozzle on the basis of a computational prediction, which contained 18 notches that were smaller than those in the 6-notched nozzle. Ongoing tests indicate greater noise reduction in agreement with the computational prediction.


2017 ◽  
Vol 16 (6) ◽  
pp. 476-490 ◽  
Author(s):  
Vasily A Semiletov ◽  
Sergey A Karabasov

As a first step towards a robust low-order modelling framework that is free from either calibration parameters based on the far-field noise data or any assumptions about the noise source structure, a new low-order noise prediction scheme is implemented. The scheme is based on the Goldstein generalised acoustic analogy and uses the Large Eddy Simulation database of fluctuating Reynolds stress fields from the CABARET MILES solution of Semiletov et al. corresponding to a static isothermal jet from the SILOET experiment for reconstruction of effective noise sources. The sources are scaled in accordance with the physics-based arguments and the corresponding sound meanflow propagation problem is solved using a frequency domain Green’s function method for each jet case. Results of the far-field noise predictions of the new method are validated for the two NASA SHJAR jet cases, sp07 and sp03 from and compared with the reference predictions, which are obtained by applying the Lighthill acoustic analogy scaling for the SILOET far-field measurements and using an empirical jet-noise prediction code, sJet.


1963 ◽  
Vol 14 (1) ◽  
pp. 1-16 ◽  
Author(s):  
G. M. Coles

SummaryA large number of far-field jet noise measurements obtained over a considerable period of time are presented, correlated in such a manner that they may be used to provide a complete noise assessment for any jet of which the performance parameters are known. The data are presented in two sections, one dealing with the problem of a static source near ground level, the other dealing with the case of a source in flight.Much of the data was derived from Avon engine tests, but a wide range of other jet noise sources has also been encompassed. Comparisons are drawn which show good correlation to exist between the overall sound pressure levels produced by jets of all sizes. It appears also that even the spectra quoted, which are based only on Avon measurements, are valid over a fairly wide range of jet sizes and are not peculiar to the Avon engine.


2012 ◽  
Vol 11 (5-6) ◽  
pp. 651-674 ◽  
Author(s):  
Jacques Lewalle ◽  
Kerwin R. Low ◽  
Mark N. Glauser
Keyword(s):  

Author(s):  
Anjaneyuly Krothapalli ◽  
Brenton Greska ◽  
Vijay Arakeri

This paper deals with an experimental investigation on the suppression of high-speed jet noise using air/water microjet injection at the nozzle exit. The far-field acoustic measurements from a high temperature Mj = 1.38 and Mj = 0.9 axisymmetric jet issuing from a converging nozzle show the suppression of screech tones, Mach wave radiation/crackle and mixing noise due to the use of microjets. Estimations of the contributions of different noise sources to the far-field sound are made using the current data supported by observations of previous investigators. It appears that the mixing noise reduction due to elimination of large eddies is found to be about 3–5 dB. Any further reduction of noise may only be accomplished by significant turbulence suppression and thermodynamic changes in the jet.


2018 ◽  
Vol 17 (1-2) ◽  
pp. 52-69 ◽  
Author(s):  
Dimitri Papamoschou

This study is motivated by the need for physical models for the jet noise source to be used in practical noise prediction schemes for propulsion–airframe integration concepts. The basis for the source model is an amplitude-modulated traveling wave—the wavepacket. The source is parameterized and the parameters are determined by minimizing the difference between the modeled and experimental sound intensity distributions in the far field. Even though the pressure signal that reaches the far field is highly filtered, sufficient information is available to construct a wavepacket with reasonable physical characteristics. A simple stochastic extension of this concept shows a connection between the shape of the far-field sound pressure level spectrum and the emission polar angle. It suggests that the broadening of the spectrum with increasing polar angle from the downstream axis can be explained on the basis of a single noise source (the wavepacket), rather than the prevailing model of two distinct noise sources, one coherent and the other incoherent.


Author(s):  
Clifford Brown

Many configurations proposed for the next generation of aircraft rely on the wing or other aircraft surfaces to shield the engine noise from the observers on the ground. However, the ability to predict the shielding effect and any new noise sources that arise from the high-speed jet flow interacting with a hard surface is currently limited. Furthermore, quality experimental data from jets with surfaces nearby suitable for developing and validating noise prediction methods are usually tied to a particular vehicle concept and, therefore, very complicated. The Jet/Surface Interaction Test was intended to supply a high quality set of data covering a wide range of surface geometries and positions and jet flows to researchers developing aircraft noise prediction tools. During phase one, the goal was to measure the noise of a jet near a simple planar surface while varying the surface length and location in order to: (1) validate noise prediction schemes when the surface is acting only as a jet noise shield and when the jet/surface interaction is creating additional noise, and (2) determine regions of interest for more detailed tests in phase two. To meet these phase one objectives, a flat plate was mounted on a two-axis traverse in two distinct configurations: (1) as a shield between the jet and the observer (microphone array) and (2) as a reflecting surface on the opposite side of the jet from the observer. The surface was moved through axial positions 2 ≤ xTE/Dj ≤ 20 (measured at the surface trailing edge, xTE, and normalized by the jet diameter, Dj) and radial positions 1 ≤ h/Dj ≤ 20. Far-field and phased array noise data were acquired at each combination of axial and radial surface location using two nozzles and at 8 different jet exit conditions across several flow regimes (subsonic cold, subsonic hot, underexpanded, ideally expanded, and overexpanded supersonic cold). The far-field noise results, discussed here, show where the surface shields some of the jet noise and, depending on the location of the surface and the observer, where scrubbing and trailing edge noise sources are created as a surface extends downstream and approaches the jet plume.


Sign in / Sign up

Export Citation Format

Share Document