Modelling of unsteady heat transfer in a transonic turbine stage

Author(s):  
V. Michelassi ◽  
F. Martelli
2008 ◽  
Vol 130 (3) ◽  
Author(s):  
A. de la Loma ◽  
G. Paniagua ◽  
D. Verrastro ◽  
P. Adami

This paper reports the external convective heat transfer distribution of a modern single-stage transonic turbine together with the physical interpretation of the different shock interaction mechanisms. The measurements have been performed in the compression tube test rig of the von Karman Institute using single- and double-layered thin film gauges. The three pressure ratios tested are representative of those encountered in actual aeroengines, with M2,is ranging from 1.07 to 1.25 and a Reynolds number of about 106. Three different rotor blade heights (15%, 50%, and 85%) and the stator blade at midspan have been investigated. The measurements highlight the destabilizing effect of the vane left-running shock on the rotor boundary layer. The stator unsteady heat transfer is dominated by the fluctuating right-running vane trailing edge shock at the blade passing frequency.


Author(s):  
A. de la Loma ◽  
G. Paniagua ◽  
D. Verrastro ◽  
P. Adami

This paper reports the external convective heat transfer distribution of a modern single-stage transonic turbine together with the physical interpretation of the different shock interaction mechanisms. The measurements have been performed in the compression tube test rig of the von Karman Institute using single and double-layered thin film gauges. The three pressure ratios tested are representative of those encountered in actual aero-engines, with M2, is ranging from 1.07 to 1.25 and a Reynolds number of about 106. Three different rotor blade heights (15%, 50% and 85%) and the stator blade at mid-span have been investigated. The measurements highlight the destabilizing effect of the vane left running shock on the rotor boundary layer. The stator unsteady heat transfer is dominated by the fluctuating right running vane trailing edge shock at the blade passing frequency.


Author(s):  
Reza S. Abhari ◽  
A. H. Epstein

Time-resolved measurements of heat transfer on a fully cooled transonic turbine stage have been taken in a short duration turbine test facility which simulates full engine non-dimensional conditions. The time average of this data is compared to uncooled rotor data and cooled linear cascade measurements made on the same profile. The film cooling reduces the time-averaged heat transfer compared to the uncooled rotor on the blade suction surface by as much as 60%, but has relatively little effect on the pressure surface. The suction surface rotor heat transfer is lower than that measured in the cascade. The results are similar over the central 3/4 of the span implying that the flow here is mainly two-dimensional. The film cooling is shown to be much less effective at high blowing ratios than at low ones. Time-resolved measurements reveal that the cooling, when effective, both reduced the d.c. level of heat transfer and changed the shape of the unsteady waveform. Unsteady blowing is shown to be a principal driver of film cooling fluctuations, and a linear model is shown to do a good job in predicting the unsteady heat transfer. The unsteadiness results in a 12% decrease in heat transfer on the suction surface and a 5% increase on the pressure surface.


2021 ◽  
Author(s):  
Richard Celestina ◽  
Spencer Sperling ◽  
Louis Christensen ◽  
Randall Mathison ◽  
Hakan Aksoy ◽  
...  

Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15%, 50% and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


2002 ◽  
Vol 124 (4) ◽  
pp. 614-622 ◽  
Author(s):  
F. Didier ◽  
R. De´nos ◽  
T. Arts

This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15, 50, and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.


Author(s):  
Mary A. Hilditch ◽  
Graham C. Smith ◽  
Udai K. Singh

This paper presents unsteady pressure and heat transfer measurements made on a high pressure turbine stage at DERA Pyestock, and compares them with numerical simulations made using the 2D unsteady code UNSFLO. The aim of the work was to evaluate the performance of the code, and to use the predictions to allow a fuller interpretation of the flow physics than could have been achieved from the measurements alone. The unsteady heat transfer and pressure fluctuations around the mid height section of the rotor blade have been examined in detail. Agreement between measured and predicted pressure fluctuations on the rotor was excellent. Interaction with the ngv potential field dominated the pressure surface, while the suction surface showed pressure waves moving forward over the blade, possibly as a result of shock/wake interaction.


Author(s):  
M. Pau ◽  
G. Paniagua ◽  
D. Delhaye ◽  
A. de la Loma ◽  
P. Ginibre

This paper describes the effects on the mainstream flow of two types of cooling techniques in a transonic turbine stage: purge gas ejected out of the cavity between the stator rim and the rotor disk, as well as film cooling gas discharged from the rotor-platform. The tests were carried out in a full annular stage fed by a compression tube, at M2is = 1.1, Re = 1.1×106, and at temperature ratios reproducing engine conditions. The stator outlet was instrumented to allow the aerothermal characterization of the purge flow. The rotor blade was heavily instrumented with fast-response pressure sensors and double-layer thin film gauges. The tests are coupled with numerical calculations performed using the ONERA’s code elsA. The stator-rotor interaction is seen to be significantly affected by the stator-rim seal, both in terms of heat transfer and pressure fluctuations. The flow exchange between the rotor disk cavity and the mainstream passage is mainly governed by the vane shock patterns. The purge flow leads to the appearance of a large coherent vortex structure on the suction side of the blade which enhances the overall heat transfer coefficient due to the blockage effect created. Secondly, the impact of the platform cooling is observed to be restricted to the platform, with negligible effects on the blade suction side. The platform cooling results in a clear attenuation of pressure pulsations at some specific locations. Finally the turbine performance was analyzed, comparing measured and CFD results. A detailed loss breakdown analysis has been done using correlations, in order to isolate the different loss component contributions. The presented results should help designers improve the protection of the rotor platform and minimize the amount of coolant used.


Sign in / Sign up

Export Citation Format

Share Document