Design Methods of Volute Casings for Turbocharger Turbine Applications

Author(s):  
H Chen

This paper discusses aerodynamic design methods of volute casings used in turbocharger turbines. A quasi-three-dimensional (Q-3D) design method is proposed in which a group of extended two-dimensional potential flow equations and the streamline equation are numerically solved to obtain the geometry of spiral volutes. A tongue loss model, based on the turbulence wake theory, is also presented, and good agreement with experimental data is shown.

2019 ◽  
Vol 81 (4) ◽  
pp. 488-499
Author(s):  
Wang Cheng ◽  
Yang Tonghui ◽  
Li Wan ◽  
Tao Li ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


Author(s):  
Nobuhito Oka ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Kota Kido

An optimum aerodynamic design method has been developed for the new type of wind turbine called “wind-lens turbine”. The wind-lens turbine has a diffuser with brim called “wind-lens”, by which the wind concentration on the turbine rotor and the significant enhancement of the turbine output can be achieved. The present design method is based on a genetic algorithm (GA) and a quasi-three-dimensional design of turbine rotor. The quasi-three-dimensional design consists of two parts: meridional viscous flow calculation and two-dimensional blade element design. In the meridional viscous flow calculation, an axisymmetric viscous flow is numerically analyzed on a meridional plane to determine the wind flow rate through the wind-lens and the spanwise distribution of the rotor inlet flow. In the two-dimensional rotor blade element design, the turbine rotor blade profile is determined by a one-dimensional through flow modeling for the wind-lens turbine and a two-dimensional blade element theory based on the momentum theorem of the ducted turbine. In the present optimization method, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used as evaluation and selection model. The Real-coded Ensemble Crossover (REX) is used as crossover model. The present aerodynamic design method has been applied to the coupled design of turbine rotor and wind-lens. Total performances and flow fields of the wind-lens turbines designed have been investigated by Reynolds averaged Navier-Stokes simulations, in order to verify the present design method.


Author(s):  
Nobuhito Oka ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Kenta Kawamitsu ◽  
Kota Kido ◽  
...  

An optimum aerodynamic design method for the new type of wind turbine called “wind-lens turbine” has been developed. The wind-lens turbine has a diffuser with brim called “wind-lens”, by which the wind concentration on the turbine rotor and the significant enhancement of the turbine output can be achieved. In order to design efficient wind-lens turbines, an aerodynamic design method for the simultaneous optimization of rotor blade and wind-lens has been developed. The present optimum design method is based on a genetic algorithm (GA) and a quasi-three-dimensional design of turbine rotor. In the GA procedure, the Non-dominated Sorting Genetic Algorithm II (NSGA-II) is used as evaluation and selection model. The Real-coded Ensemble Crossover (REX) is used as crossover model. The quasi-three-dimensional design consists of two parts: meridional viscous flow calculation and two-dimensional blade element design. In the meridional viscous flow calculation, an axisymmetric viscous flow is numerically analyzed on a meridional plane to determine the wind flow rate through the wind-lens and the spanwise distribution of the rotor inlet flow. In the two-dimensional rotor blade element design, the turbine rotor blade profile is determined by a one-dimensional through flow modeling for the wind-lens turbine and a two-dimensional blade element theory based on the momentum theorem of the ducted turbine. Total performances and three-dimensional flow fields of the optimized wind-lens turbines have been investigated by Reynolds averaged Navier-Stokes (RANS) simulations, in order to verify the present design method. The RANS simulations and the flow visualization have been applied to conventional and optimum design cases of the wind-lens turbine, in order to elucidate the relation between their aerodynamic performances and the flow fields around them. The numerical results show that separation vortices behind the wind-lens brim play a major role in the wind concentration and the diffuser performance of the wind-lens. As a result, it is found that the aerodynamic performance of wind-lens turbine is significantly affected by the interrelationship between the internal and external flow fields around the wind-lens.


2009 ◽  
Vol 633 ◽  
pp. 425-435 ◽  
Author(s):  
PEDRO A. QUINTO-SU ◽  
CLAUS-DIETER OHL

We report on experimental and numerical studies of pairs of cavitation bubbles growing and collapsing close to each other in a narrow gap. The bubbles are generated with a pulsed and focused laser in a liquid-filled gap of 15 μm height; during their lifetime which is shorter than 14 μs they expand to a maximum radius of up to Rmax = 38 μm. Their motion is recorded with high-speed photography at up to 500000 frames s−1. The separation at which equally sized bubbles are created, d, is varied from d = 46–140 μm which results into a non-dimensional stand-off distance, γ = d/(2Rmax), from 0.65 to 2. For large separation the bubbles shrink almost radially symmetric; for smaller separation the bubbles repulse each other during expansion and during collapse move towards each other. At closer distances we find a flattening of the proximal bubbles walls. Interestingly, due to the short lifetime of the bubbles (≤14 μs), the radial and centroidal motion can be modelled successfully with a two-dimensional potential flow ansatz, i.e. neglecting viscosity. We derive the equations for arbitrary configurations of two-dimensional bubbles. The good agreement between model and experiments supports that the fluid dynamics is essentially a potential flow for the experimental conditions of this study. The interaction force (secondary Bjerknes force) is long ranged dropping off only with 1/d as compared to previously studied three-dimensional geometries where the force is proportional to 1/d2.


2019 ◽  
Vol 81 (4) ◽  
pp. 489-500
Author(s):  
Cheng Wang ◽  
Tonghui Yang ◽  
Wan Li ◽  
Li Tao ◽  
M.H. Abuziarov ◽  
...  

The spatial problem of internal explosive loading of an elastoplastic cylindrical container filled with water in Eulerian - Lagrangian variables using multigrid algorithms is considered. A defining system of three-dimensional equations of the dynamics of gas, fluid, and elastoplastic medium is presented. For numerical modeling, a modification of S.K. Godunov scheme of the increased accuracy for both detonation products and liquids, and elastoplastic container is used. At the moving contact boundaries “detonation products - liquid”, “liquid - deformable body”, the exact solution of the Riemann's problem is used. A time dependent model is used to describe the propagation of steady-state detonation wave through an explosive from an initiation region. In both cases, the initiation of detonation occurs at the center of the charge. Two problems have been solved: the first task for the aisymmetric position of the charge, the second for the charge shifted relative to the axis of symmetry. In the first task, the processes are two-dimensional axisymmetric in nature, in the second task, the processes are essentially three-dimensional. A comparison is made of the results of calculations of the first problem using a three-dimensional method with a solution using a previously developed two-dimensional axisymmetric method and experimental data. Good agreement is observed between the numerical results for the maximum velocities and circumferential strains obtained by various methods and experimental data. There is good agreement between the numerical results obtained by various methods and the known experimental data. Comparison of the results of solving the first and second problems shows a significant effect of the position of the charge on the wave processes in the liquid, the processes of loading the container and its elastoplastic deformation. The dynamic behavior of a gas bubble with detonation products is analyzed. A significant deviation of the bubble shape from the spherical one, caused by the action of shock waves reflected from the structure, is shown. Comparison of the results of solving the first and second problems showed a significant effect of the charge position on wave processes in a liquid, the processes of loading a container and its elastoplastic deformation. In particular, in the second problem, shock waves of higher amplitude are observed in the liquid when reflected from the walls of the container.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
W. Saleh ◽  
R. C. Bowden ◽  
I. G. Hassan ◽  
L. Kadem

The onset of gas entrainment in a single downward discharge, from a stratified gas-liquid region, was modeled. The discharge was modeled as a point-sink and Kelvin–Laplace’s equation was used to incorporate surface tension effects. Consequently, a criterion to characterize the dip radius of curvature, at the onset of gas entrainment, was required. The dip geometry was experimentally investigated and a correlation was developed relating the dip radius of curvature to the discharge Froude number. The correlation was used in conjunction with the theoretical model. It was found that the predicted critical height demonstrated good agreement with experimental data with the three-dimensional point-sink approach, while poor agreement using the two-dimensional finite-branch approach was found. The inclusion of surface tension improved the model’s capability to predict the critical height, particularly at discharge Froude numbers below 1.


Author(s):  
W. T. Tiow ◽  
M. Zangeneh

The development and application of a three-dimensional inverse methodology is presented for the design of turbomachinery blades. The method is based on the mass-averaged swirl, rV~θ distribution and computes the necessary blade changes directly from the discrepancies between the target and initial distributions. The flow solution and blade modification converge simultaneously giving the final blade geometry and the corresponding steady state flow solution. The flow analysis is performed using a cell-vertex finite volume time-marching algorithm employing the multistage Runge-Kutta integrator in conjunction with accelerating techniques (local time stepping and grid sequencing). To account for viscous effects, dissipative forces are included in the Euler solver using the log-law and mixing length models. The design method can be used with any existing solver solving the same flow equations without any modifications to the blade surface wall boundary condition. Validation of the method has been carried out using a transonic annular turbine nozzle and NASA rotor 67. Finally, the method is demonstrated on the re-design of the blades.


2004 ◽  
Vol 18 (09) ◽  
pp. 1351-1368
Author(s):  
ANDREI DOLOCAN ◽  
VOICU OCTAVIAN DOLOCAN ◽  
VOICU DOLOCAN

Using a new Hamiltonian of interaction we have calculated the cohesive energy in three-dimensional structures. We have found the news dependences of this energy on the distance between the atoms. The obtained results are in a good agreement with experimental data in ionic, covalent and noble gases crystals. The coupling constant γ between the interacting field and the atoms is somewhat smaller than unity in ionic crystals and is some larger than unity in covalent and noble gases crystals. The formulae found by us are general and may be applied, also, to the other types of interactions, for example, gravitational interactions.


Author(s):  
S. V. Subramanian ◽  
R. Bozzola ◽  
Louis A. Povinelli

The performance of a three dimensional computer code developed for predicting the flowfield in stationary and rotating turbomachinery blade rows is described in this study. The four stage Runge-Kutta numerical integration scheme is used for solving the governing flow equations and yields solution to the full, three dimensional, unsteady Euler equations in cylindrical coordinates. This method is fully explicit and uses the finite volume, time marching procedure. In order to demonstrate the accuracy and efficiency of the code, steady solutions were obtained for several cascade geometries under widely varying flow conditions. Computed flowfield results are presented for a fully subsonic turbine stator and a low aspect ratio, transonic compressor rotor blade under maximum flow and peak efficiency design conditions. Comparisons with Laser Anemometer measurements and other numerical predictions are also provided to illustrate that the present method predicts important flow features with good accuracy and can be used for cost effective aerodynamic design studies.


Author(s):  
L. Gallar ◽  
I. Tzagarakis ◽  
V. Pachidis ◽  
R. Singh

After a shaft failure the compression system of a gas turbine is likely to surge due to the heavy vibrations induced on the engine after the breakage. Unlike at any other conditions of operation, compressor surge during a shaft over-speed event is regarded as desirable as it limits the air flow across the engine and hence the power available to accelerate the free turbine. It is for this reason that the proper prediction of the engine performance during a shaft over-speed event claims for an accurate modelling of the compressor operation at reverse flow conditions. The present study investigates the ability of the existent two dimensional algorithms to simulate the compressor performance in backflow conditions. Results for a three stage axial compressor at reverse flow were produced and compared against stage by stage experimental data published by Gamache. The research shows that due to the strong radial fluxes present over the blades, two dimensional approaches are inadequate to provide satisfactory results. Three dimensional effects and inaccuracies are accounted for by the introduction of a correction parameter that is a measure of the pressure loss across the blades. Such parameter is tailored for rotors and stators and enables the satisfactory agreement between calculations and experiments in a stage by stage basis. The paper concludes with the comparison of the numerical results with the experimental data supplied by Day on a four stage axial compressor.


Sign in / Sign up

Export Citation Format

Share Document