scholarly journals Mean Flow Boundary Conditions for Computational Aeroacoustics

Author(s):  
Ray Hixon ◽  
M. Nallasamy ◽  
S. Sawyer ◽  
R. Dyson
1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


2002 ◽  
Vol 473 ◽  
pp. 201-210 ◽  
Author(s):  
ROBERTO VERZICCO

The effects of a sidewall with finite thermal conductivity on confined turbulent thermal convection has been investigated using direct numerical simulation. The study is motivated by the observation that the heat flowing through the lateral wall is not always negligible in the low-aspect-ratio cells of several recent experiments. The extra heat flux modifies the temperature boundary conditions of the flow and therefore the convective heat transfer. It has been found that, for usual sidewall thicknesses, the heat travelling from the hot to the cold plates directly through the sidewall is negligible owing to the additional heat exchanged at the lateral fluid/wall interface. In contrast, the modified temperature boundary conditions alter the mean flow yielding significant Nusselt number corrections which, in the low Rayleigh number range, can change the exponent of the Nu vs. Ra power law by 10%.


Author(s):  
Gary A. Glatzmaier

This chapter examines how boundary and geometry affect convection. It begins with a discussion of how one can implement “absorbing” top and bottom boundaries, which reduce the large-amplitude convectively driven flows within shallow boundary layers or the reflection of internal gravity waves off these boundaries in a stable stratification. It then considers how to replace the impermeable side boundary conditions with permeable periodic side boundary conditions to allow fluid flow through these boundaries and nonzero mean flow. It also introduces “two and a half dimensional” geometry within a cartesian box geometry and describes how a fully 3D cartesian box model could be constructed. Finally, it presents a model of convection in a fully 3D spherical-shell and shows how it can be easily reduced to a 2.5D spherical-shell model. The horizontal structures are represented in terms of spherical harmonic expansions.


Author(s):  
Alessio Firrito ◽  
Yannick Bousquet ◽  
Nicolas Binder ◽  
Ludovic Pintat

Abstract In recent years, lot of turbine research is focused on the study and optimization of inter-turbine ducts, an aero-engine component for which the design is becoming more challenging due to the turbofan architecture evolution. Starting from the early design phase, the knowledge of the component performance and outlet flow pattern is crucial in the design of the low pressure turbine. To improve prediction, multi-row unsteady simulations are deployed. Unfortunately, some questions arise in the use of these simulations, among others the knowledge of the turbulent boundary conditions and the contribution of the unsteady simulations to the flow solution. In this paper steady and time resolved RANS simulations of a turning inter-turbine duct are investigated. Particularly, two questions are addressed. The first one is the influence of the turbulent quantities boundary conditions in the case of a k–ω Wilcox turbulence model in the flow field solution. The second one is the contribution of the unsteadiness to the mean flow prediction. It will be shown that the mean flow depends on inlet turbulence only if the turbulence length scale is relatively high; otherwise the flow field is almost turbulence-invariant. For the unsteady simulations, unsteadiness modifies the mean flow solution only with low inlet turbulence.


Sign in / Sign up

Export Citation Format

Share Document