Model of vortex flow of charge in a vessel with turbine impeller

1987 ◽  
Vol 52 (8) ◽  
pp. 1888-1904
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

A theoretical model is described of the mean two-dimensional flow of homogeneous charge in a flat-bottomed cylindrical tank with radial baffles and six-blade turbine disc impeller. The model starts from the concept of vorticity transport in the bulk of vortex liquid flow through the mechanism of eddy diffusion characterized by a constant value of turbulent (eddy) viscosity. The result of solution of the equation which is analogous to the Stokes simplification of equations of motion for creeping flow is the description of field of the stream function and of the axial and radial velocity components of mean flow in the whole charge. The results of modelling are compared with the experimental and theoretical data published by different authors, a good qualitative and quantitative agreement being stated. Advantage of the model proposed is a very simple schematization of the system volume necessary to introduce the boundary conditions (only the parts above the impeller plane of symmetry and below it are distinguished), the explicit character of the model with respect to the model parameters (model lucidity, low demands on the capacity of computer), and, in the end, the possibility to modify the given model by changing boundary conditions even for another agitating set-up with radially-axial character of flow.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550076 ◽  
Author(s):  
Reza Ansari ◽  
Mostafa Faghih Shojaei ◽  
Vahid Mohammadi ◽  
Raheb Gholami ◽  
Mohammad Ali Darabi

In this paper, a geometrically nonlinear first-order shear deformable nanoplate model is developed to investigate the size-dependent geometrically nonlinear free vibrations of rectangular nanoplates considering surface stress effects. For this purpose, according to the Gurtin–Murdoch elasticity theory and Hamilton's principle, the governing equations of motion and associated boundary conditions of nanoplates are derived first. Afterwards, the set of obtained nonlinear equations is discretized using the generalized differential quadrature (GDQ) method and then solved by a numerical Galerkin scheme and pseudo arc-length continuation method. Finally, the effects of important model parameters including surface elastic modulus, residual surface stress, surface density, thickness and boundary conditions on the vibration characteristics of rectangular nanoplates are thoroughly investigated. It is found that with the increase of the thickness, nanoplates can experience different vibrational behavior depending on the type of boundary conditions.



2005 ◽  
Vol 35 (7) ◽  
pp. 1263-1278 ◽  
Author(s):  
Baylor Fox-Kemper

Abstract Multiple-gyre ocean models have a weaker mean subtropical circulation than single-gyre calculations with the same viscosity and subtropical forcing. Traditionally, this reduction in circulation is attributed to an intergyre eddy vorticity flux that cancels some of the wind input, part of which does not require a Lagrangian mass exchange (theory of dissipative meandering). Herein the intergyre eddy vorticity flux is shown to be a controlling factor in barotropic models at high Reynolds number only with exactly antisymmetric gyres and slip boundary conditions. Almost no intergyre flux occurs when no-slip boundary conditions are used, yet the subtropical gyre is still significantly weaker in multiple-gyre calculations. Sinuous modes of instability present only in multiple gyres are shown here to vastly increase the eddy vorticity transport efficiency. This increase in efficiency reduces the mean circulation necessary for equilibrium. With slip boundary conditions, the intergyre eddy transport is possibly much larger. However, with wind forcing relevant for the ocean—two unequal gyres—a mean flow flux of vorticity rather than an eddy flux between the regions of opposing wind forcing is increasingly important with increasing Reynolds number. A physical rationalization of the differing results is provided by diagnosis of the equilibrium vorticity budget and eddy transport efficiency. Calculations varying 1) boundary conditions, 2) sources and sinks of vorticity, 3) eddy transport efficiency, and 4) the degree of symmetry of the gyres are discussed.



1985 ◽  
Vol 50 (11) ◽  
pp. 2396-2410
Author(s):  
Miloslav Hošťálek ◽  
Ivan Fořt

The study describes a method of modelling axial-radial circulation in a tank with an axial impeller and radial baffles. The proposed model is based on the analytical solution of the equation for vortex transport in the mean flow of turbulent liquid. The obtained vortex flow model is tested by the results of experiments carried out in a tank of diameter 1 m and with the bottom in the shape of truncated cone as well as by the data published for the vessel of diameter 0.29 m with flat bottom. Though the model equations are expressed in a simple form, good qualitative and even quantitative agreement of the model with reality is stated. Apart from its simplicity, the model has other advantages: minimum number of experimental data necessary for the completion of boundary conditions and integral nature of these data.



2016 ◽  
Vol 25 (04) ◽  
pp. 1630011 ◽  
Author(s):  
Alejandro Corichi ◽  
Irais Rubalcava-García ◽  
Tatjana Vukašinac

In this review, we consider first-order gravity in four dimensions. In particular, we focus our attention in formulations where the fundamental variables are a tetrad [Formula: see text] and a [Formula: see text] connection [Formula: see text]. We study the most general action principle compatible with diffeomorphism invariance. This implies, in particular, considering besides the standard Einstein–Hilbert–Palatini term, other terms that either do not change the equations of motion, or are topological in nature. Having a well defined action principle sometimes involves the need for additional boundary terms, whose detailed form may depend on the particular boundary conditions at hand. In this work, we consider spacetimes that include a boundary at infinity, satisfying asymptotically flat boundary conditions and/or an internal boundary satisfying isolated horizons boundary conditions. We focus on the covariant Hamiltonian formalism where the phase space [Formula: see text] is given by solutions to the equations of motion. For each of the possible terms contributing to the action, we consider the well-posedness of the action, its finiteness, the contribution to the symplectic structure, and the Hamiltonian and Noether charges. For the chosen boundary conditions, standard boundary terms warrant a well posed theory. Furthermore, the boundary and topological terms do not contribute to the symplectic structure, nor the Hamiltonian conserved charges. The Noether conserved charges, on the other hand, do depend on such additional terms. The aim of this manuscript is to present a comprehensive and self-contained treatment of the subject, so the style is somewhat pedagogical. Furthermore, along the way, we point out and clarify some issues that have not been clearly understood in the literature.



2002 ◽  
Vol 473 ◽  
pp. 201-210 ◽  
Author(s):  
ROBERTO VERZICCO

The effects of a sidewall with finite thermal conductivity on confined turbulent thermal convection has been investigated using direct numerical simulation. The study is motivated by the observation that the heat flowing through the lateral wall is not always negligible in the low-aspect-ratio cells of several recent experiments. The extra heat flux modifies the temperature boundary conditions of the flow and therefore the convective heat transfer. It has been found that, for usual sidewall thicknesses, the heat travelling from the hot to the cold plates directly through the sidewall is negligible owing to the additional heat exchanged at the lateral fluid/wall interface. In contrast, the modified temperature boundary conditions alter the mean flow yielding significant Nusselt number corrections which, in the low Rayleigh number range, can change the exponent of the Nu vs. Ra power law by 10%.



2014 ◽  
Vol 44 (3) ◽  
pp. 49-64 ◽  
Author(s):  
Li Li ◽  
P. J. Wei

Abstract The shear surface wave at the free traction surface of half- infinite functionally graded magneto-electro-elastic material with initial stress is investigated. The material parameters are assumed to vary ex- ponentially along the thickness direction, only. The velocity equations of shear surface wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magneto-electro-elastic material with the initial stresses and the free traction boundary conditions. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are discussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.



Author(s):  
Alireza Sheykhi ◽  
Shahrokh Hosseini-Hashemi ◽  
Adel Maghsoudpour ◽  
Shahram E Haghighi

In this study, the nonlinear free vibrations behaviour of nano-truncated conical shells was analysed, using the first-order shear deformable shell model. The analysis took into account the structure size through modified strain gradient theory, and differential quadrature and Fréchet derivative methods in von Kármán-Donnell-type approach to kinematic nonlinearity. The governing equations were obtained, utilizing Hamilton's principle. Partial differential equations plus the non-classical and classical boundary conditions were used to obtain the shells’ equations of motion. Discretizing the boundary conditions and equations of motion were performed based on a generalized differential quadrature analogy. The eigenvalue system was considered based on the harmonic balance technique. The Galerkin and Fréchet derivative approaches were used to determine the nonlinear free vibration behaviour of the carbon nano-cone, which was modelled in the simply- and clamped-supported boundary conditions. Comparisons were made between the findings from the new model versus the couple and classical stress theories, indicating that the classical and modified couple stress theories are distinct representations of modified strain gradient theory. The results also revealed that the degree of hardening of nano-truncated conical shells in the modified strain gradient theory is less than that of modified couple stress and classical theories. This led to a rise in the non-dimensional amplitude and frequency ratios. This study investigated the effect of size on free nonlinear vibrations of nano-truncated conical shells for various apex angles and lengths. Finally, we evaluated and compared our findings versus those reported by previous studies, which confirmed the precision and accuracy of our results.



Author(s):  
Michael Link ◽  
Zheng Qian

Abstract In recent years procedures for updating analytical model parameters have been developed by minimizing differences between analytical and preferably experimental modal analysis results. Provided that the initial analysis model contains parameters capable of describing possible damage these techniques could also be used for damage detection. In this case the parameters are updated using test data before and after the damage. Looking at complex structures with hundreds of parameters one generally has to measure the modal data at many locations and try to reduce the number of unknown parameters by some kind of localization technique because the measurement information is generally not sufficient to identify all the parameters equally distributed all over the structure. Another way of reducing the number of parameters shall be presented here. This method is based on the idea of measuring only a part of the structure and replacing the residual structure by dynamic boundary conditions which describe the dynamic stiffness at the interfaces between the measured main structure and the remaining unmeasured residual structure. This approach has some advantage since testing could be concentrated on critical areas where structural modifications are expected either due to damage or due to intended design changes. The dynamic boundary conditions are expressed in Craig-Bampton (CB) format by transforming the mass and stiffness matrices of the unmeasured residual structure to the interface degrees of freedom (DOF) and to the modal DOFs of the residual structure fixed at the interface. The dynamic boundary stiffness concentrates all physical parameters of the residual structure in only a few parameters which are open for updating. In this approach damage or modelling errors within the unmeasured residual structure are taken into account only in a global sense whereas the measured main structure is parametrized locally as usual by factoring mass and stiffness submatrices defining the type and the location of the physical parameters to be identified. The procedure was applied to identify the design parameters of a beam type frame structure with bolted joints using experimental modal data.



Author(s):  
Igor Orynyak ◽  
Yaroslav Dubyk

Simple approximate formulas for the natural frequencies of circular cylindrical shells are presented for modes in which transverse deflection dominates. Based on the Donnell-Mushtari thin shell theory the equations of motion of the circular cylindrical shell are introduced, using Vlasov assumptions and Fourier series for the circumferential direction, an exact solution in the axial direction is obtained. To improve the results assumptions of Vlasov’s semimomentless theory are enhanced, i.e. we have used only the hypothesis of middle surface inextensibility to obtain a solution in axial direction. Nonlinear characteristic equations and natural mode shapes, are derived for all type of boundary conditions. Good agreement with experimental data and FEM is shown and advantage over the existing formulas for a variety of boundary conditions is presented.



Sign in / Sign up

Export Citation Format

Share Document