Defining Characteristic Cloud Drop Spectra From In-situ Measurements.

Author(s):  
Stewart Cober ◽  
George Isaac ◽  
Anil Shah ◽  
Richard Jeck
2012 ◽  
Vol 12 (1) ◽  
pp. 1419-1449 ◽  
Author(s):  
Q. Min ◽  
E. Joseph ◽  
Y. Lin ◽  
L. Min ◽  
B. Yin ◽  
...  

Abstract. Utilizing the unique characteristics of the cloud over the Southeast Pacific (SEP) off the coast of Chile during the VOCALS field campaign, we validated satellite remote sensing of cloud microphysical properties against in situ data from multi-aircraft observations, and studied the extent to which these retrieved properties are sufficiently constrained and consistent to reliably quantify the influence of aerosol loading on cloud droplet sizes. After constraining the spatial-temporal coincidence between satellite retrievals and in situ measurements, we selected 17 non-drizzle comparison pairs. For these cases the mean aircraft profiling times were within one hour of Terra overpass at both projected and un-projected (actual) aircraft positions for two different averaging domains of 5 km and 25 km. Retrieved quantities that were averaged over a larger domain of 25 km compared better statistically with in situ observations than averages over a smaller domain of 5 km. Validation at projected aircraft positions was slightly better than un-projected aircraft positions for some parameters. Overall, both MODIS-retrieved effective radius and LWP were larger but highly correlated with the in situ measured effective radius and LWP. The observed effective radius difference between the two decreased with increasing cloud drop number concentration, and increased with increasing cloud geometrical thickness. Also, MODIS retrievals for adiabatic clouds agreed better with the in situ measurements than for sub-adiabatic clouds. Our validation and sensitivity analysis of simulated retrievals demonstrate that both cloud geometrical thickness and cloud adiabaticity are important factors in satellite retrievals of effective radius and cloud drop number concentration. The large variabilities in cloud geometric thickness and adiabaticity, the dependencies of cloud microphysical properties on both quantities (as demonstrated in our sensitivity study of simulated retrievals), and the inability to accurately account for either of them in retrievals lead to substantial uncertainties and biases in satellite retrieved cloud effective radius, cloud liquid water path, and cloud drop number concentration. However, strong correlations between satellite retrievals and in situ measurements suggest that satellite retrievals of cloud effective radius, cloud liquid water path, and cloud drop number concentration can be used to investigate aerosol indirect effects qualitatively.


2012 ◽  
Vol 12 (23) ◽  
pp. 11261-11273 ◽  
Author(s):  
Q. Min ◽  
E. Joseph ◽  
Y. Lin ◽  
L. Min ◽  
B. Yin ◽  
...  

Abstract. Utilizing the unique characteristics of the cloud over the Southeast Pacific (SEP) off the coast of Chile during the VOCALS field campaign, we compared satellite remote sensing of cloud microphysical properties against in-situ data from multi-aircraft observations, and studied the extent to which these retrieved properties are sufficiently constrained and consistent to reliably quantify the influence of aerosol loading on cloud droplet sizes. After constraining the spatial-temporal coincidence between satellite retrievals and in-situ measurements, we selected 17 non-drizzle comparison pairs. For these cases the mean aircraft profiling times were within one hour of Terra overpasses at both projected and un-projected (actual) aircraft positions for two different averaging domains of 5 km and 25 km. Retrieved quantities that were averaged over a larger domain of 25 km compared better statistically with in-situ observations than averages over a smaller domain of 5 km. Comparison at projected aircraft positions was slightly better than un-projected aircraft positions for some parameters. Overall, both MODIS-retrieved effective radius and LWP were larger but highly correlated with the in-situ measured effective radius and LWP, e.g., for averaging domains of 5 km, the biases are up to 1.75 μm and 0.02 mm whilst the correlation coefficients are about 0.87 and 0.85, respectively. The observed effective radius difference between the two decreased with increasing cloud drop number concentration (CDNC), and increased with increasing cloud geometrical thickness. Compared to the absolute effective radius difference, the correlations between the relative effective radius difference and CDNC or cloud geometric thickness are weaker. For averaging domains of 5 km and 25 km, the correlation coefficients between MODIS-retrieved and in-situ measured CDNC are 0.91 and 0.93 with fitting slopes of 1.23 and 1.27, respectively. If the cloud adiabaticity is taken into account, better agreements are achieved for both averaging domains (the fitting slopes are 1.04 and 1.07, respectively). Our comparison and sensitivity analysis of simulated retrievals demonstrate that both cloud geometrical thickness and cloud adiabaticity are important factors in satellite retrievals of effective radius and cloud drop number concentration. The large variabilities in cloud geometrical thickness and adiabaticity, the dependencies of cloud microphysical properties on both quantities (as demonstrated in our sensitivity study of simulated retrievals), and the inability to accurately account for either of them in retrievals lead to some uncertainties and biases in satellite retrieved cloud effective radius, cloud liquid water path, and cloud drop number concentration. However, strong correlations between satellite retrievals and in-situ measurements suggest that satellite retrievals of cloud effective radius, cloud liquid water path, and cloud drop number concentration can be used to investigate aerosol indirect effects qualitatively.


2019 ◽  
Author(s):  
Michael Stukel ◽  
Thomas Kelly

Thorium-234 (234Th) is a powerful tracer of particle dynamics and the biological pump in the surface ocean; however, variability in carbon:thorium ratios of sinking particles adds substantial uncertainty to estimates of organic carbon export. We coupled a mechanistic thorium sorption and desorption model to a one-dimensional particle sinking model that uses realistic particle settling velocity spectra. The model generates estimates of 238U-234Th disequilibrium, particulate organic carbon concentration, and the C:234Th ratio of sinking particles, which are then compared to in situ measurements from quasi-Lagrangian studies conducted on six cruises in the California Current Ecosystem. Broad patterns observed in in situ measurements, including decreasing C:234Th ratios with depth and a strong correlation between sinking C:234Th and the ratio of vertically-integrated particulate organic carbon (POC) to vertically-integrated total water column 234Th, were accurately recovered by models assuming either a power law distribution of sinking speeds or a double log normal distribution of sinking speeds. Simulations suggested that the observed decrease in C:234Th with depth may be driven by preferential remineralization of carbon by particle-attached microbes. However, an alternate model structure featuring complete consumption and/or disaggregation of particles by mesozooplankton (e.g. no preferential remineralization of carbon) was also able to simulate decreasing C:234Th with depth (although the decrease was weaker), driven by 234Th adsorption onto slowly sinking particles. Model results also suggest that during bloom decays C:234Th ratios of sinking particles should be higher than expected (based on contemporaneous water column POC), because high settling velocities minimize carbon remineralization during sinking.


2013 ◽  
Vol 24 (3) ◽  
pp. 147
Author(s):  
Ming LI ◽  
Qinghua YANG ◽  
Jiechen ZHAO ◽  
Lin ZHANG ◽  
Chunhua LI ◽  
...  

1995 ◽  
Vol 31 (7) ◽  
pp. 51-59 ◽  
Author(s):  
Ian Guymer ◽  
Rob O'Brien

Previously, the design of sewer systems has been limited to studies of their hydraulic characteristics, in particular the ability of the system to convey the maximum discharge. Greater environmental awareness has necessitated that new designs, and some existing schemes, are assessed to determine the environmental load which the scheme will deliver to any downstream component. This paper describes a laboratory programme which has been designed to elucidate the effects of manholes on the longitudinal dispersion of solutes. A laboratory system is described, which allows in situ measurements to be taken of the concentration of a fluorescent solute tracer, both up- and down-stream of a surcharged manhole junction. Results are presented from a preliminary series of studies undertaken for a single manhole geometry over a range of discharges, with varying levels of surcharge. Results are presented showing the variation of travel time, change in second moment of the distribution and of a dispersion factor with surcharge, assuming a Taylor approach and determining the dispersion factor using a ‘change in moment’ method. The effect of the stored volume within the manhole is clearly evident. The limitations and the applicability of this approach are discussed.


Proceedings ◽  
2018 ◽  
Vol 2 (10) ◽  
pp. 565
Author(s):  
Nguyen Nguyen Vu ◽  
Le Van Trung ◽  
Tran Thi Van

This article presents the methodology for developing a statistical model for monitoring salinity intrusion in the Mekong Delta based on the integration of satellite imagery and in-situ measurements. We used Landsat-8 Operational Land Imager and Thermal Infrared Sensor (Landsat- 8 OLI and TIRS) satellite data to establish the relationship between the planetary reflectance and the ground measured data in the dry season during 2014. The three spectral bands (blue, green, red) and the principal component band were used to obtain the most suitable models. The selected model showed a good correlation with the exponential function of the principal component band and the ground measured data (R2 > 0.8). Simulation of the salinity distribution along the river shows the intrusion of a 4 g/L salt boundary from the estuary to the inner field of more than 50 km. The developed model will be an active contribution, providing managers with adaptation and response solutions suitable for intrusion in the estuary as well as the inner field of the Mekong Delta.


Sign in / Sign up

Export Citation Format

Share Document