Flight Test Results for a Fuel Cell Unmanned Aerial Vehicle

Author(s):  
Thomas Bradley ◽  
Blake Moffitt ◽  
David Parekh ◽  
Dimitri Mavris
2021 ◽  
Vol 9 (3) ◽  
pp. 2170031
Author(s):  
Betül Erdör Türk ◽  
Mustafa Hadi Sarul ◽  
Ekrem Çengelci ◽  
Çiğdem İyigün Karadağ ◽  
Fatma Gül Boyacı San ◽  
...  

2021 ◽  
Vol 92 (10) ◽  
pp. 618-622
Author(s):  
Yu. A. Burtsev ◽  
A. V. Pavlenko ◽  
I. V. Vasyukov ◽  
V. S. Puzin ◽  
A. V. Zhivodernikov

2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


2018 ◽  
Vol 159 ◽  
pp. 02045
Author(s):  
Mochammad Ariyanto ◽  
Joga D. Setiawan ◽  
Teguh Prabowo ◽  
Ismoyo Haryanto ◽  
Munadi

This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.


Sign in / Sign up

Export Citation Format

Share Document