scholarly journals Aerodynamic Analysis of Blended Wing Body - Unmanned Aerial Vehicle (BWB-UAV) Equipped with Horizontal Stabilizers

2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.

2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Wirachman Wisnoe ◽  
Rizal E.M. Nasir ◽  
Ramzyzan Ramly ◽  
Wahyu Kuntjoro ◽  
Firdaus Muhammad

In this paper, a study of aerodynamic characteristics of UiTM's Blended-Wing-Body Unmanned Aerial Vehicle (BWB-UAV) Baseline-II in terms of side force, drag force and yawing moment coefficients are presented through Computational Fluid Dynamics (CFD) simulation. A vertical rudder is added to the aircraft at the rear centre part of the fuselage as yawing control surface. The study consists of varying the side slip angles for various rudder deflection angles and to plot the results for each aerodynamic parameter. The comparison with other yawing control surface for the same aircraft obtained previously are also presented. For validation purpose, the lift and drag coefficients are compared with the results obtained from wind tunnel experiments. 


Aerospace ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. 23 ◽  
Author(s):  
David Communier ◽  
Ruxandra Mihaela Botez ◽  
Tony Wong

This paper presents the design and wind tunnel testing of a morphing camber system and an estimation of performances on an unmanned aerial vehicle. The morphing camber system is a combination of two subsystems: the morphing trailing edge and the morphing leading edge. Results of the present study show that the aerodynamics effects of the two subsystems are combined, without interfering with each other on the wing. The morphing camber system acts only on the lift coefficient at a 0° angle of attack when morphing the trailing edge, and only on the stall angle when morphing the leading edge. The behavior of the aerodynamics performances from the MTE and the MLE should allow individual control of the morphing camber trailing and leading edges. The estimation of the performances of the morphing camber on an unmanned aerial vehicle indicates that the morphing of the camber allows a drag reduction. This result is due to the smaller angle of attack needed for an unmanned aerial vehicle equipped with the morphing camber system than an unmanned aerial vehicle equipped with classical aileron. In the case study, the morphing camber system was found to allow a reduction of the drag when the lift coefficient was higher than 0.48.


2014 ◽  
Vol 644-650 ◽  
pp. 527-530
Author(s):  
Ji He Zhou ◽  
Xiao An Long

The water tunnel and wind tunnel test carried on the arrow aims to have a better understanding of the hydrodynamics performance of arrows and to improve the technical knowledge of the archery movement Through the experimental research, we can draw conclusions as follows: within the range of angle of attack ( -6°---6°), the arrow can keep the state of attached flow: The state of flow of the arrow with spiral plastic pinna is better than that of arrow with straight one; Within the experimental angle of attack, the lift coefficient Cy will become larger with the pitching moment coefficient Mz getting smaller with the increase of the angle of attack. The arrow has the vertical static stability; with or without arrow feather will have great impact on lift force Y and pitching moment coefficient Mz; the feather rolling will have some impact on lift coefficient Cy, The arrow feather is the main components to produce lift force Y and to give the arrow body relatively great static stability.


2018 ◽  
Vol 197 ◽  
pp. 08017
Author(s):  
Handrico Ramelan Pratama ◽  
Muhammad Agung Bramantya

Wings have a function of changing the air flowing into force lift, and drag. It can reduce the drag is fairing flap track, where its function can reduce the obstacles caused by the effects of compressibility, fairing flap track also has a major influence on reducing the coefficient drag on airfoil. In this study, we observed the addition of fairing flap track to airfoil, fairing inspired by Sailfish and Blue Shark fish, its fins known to have speeds of 60 km/h. The independent variable in this research is compare airfoil NACA 4412 and NACA 6412, while the dependent variable is influence of fairing flap track configuration on unmanned aerial vehicle (UAV) character by knowing coefficient lift, coefficient drag and lift to drag ratio using software computational fluid dynamic (CFD). Simulation results know that the coefficient drag airfoil NACA 4412 decreased 0.3%, coefficient lift decreased 0.5% and coefficient drag airfoil NACA 6412 also decreased 0.4%, coefficient lift decreased 0.7%. It can be concluded that the addition of fairing on airfoil is very influential in reducing the value of coefficient drag and improve the coefficient lift on airfoil.


Author(s):  
Amir Birjandi ◽  
◽  
Valentin Guerry ◽  
Eric Bibeau ◽  
Hamidreza Bolandhemmat ◽  
...  

2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


2021 ◽  
Author(s):  
Masateru Maeda ◽  
Natsuki Harada ◽  
Hiroto Tanaka

Hydrodynamic performance of a gliding penguin flipper (wing) considering the backward sweep was estimated with computational fluid dynamics (CFD) simulation. A flipper of a gentoo penguin (Pygoscelis papua) was 3D scanned, smoothed, and a numerical fluid mesh was generated. For accurate yet resource-saving computation, an embedded large-eddy simulation (ELES) methods was employed, where the flow near the flipper was solved with large-eddy simulation (LES) and flow far away from the flipper was solved with Reynolds-averaged Navier-Stokes (RANS). The relative flow speed was fixed at 2 m s-1, close to the typical foraging speed for the penguin species. The sweep angle was set to be 0°, 30°, and 60°, while the angle of attack was varied between -40° and 40°, both are within the realistic ranges in the wing kinematics measurement of penguins in an aquarium. It was revealed that a higher sweep angle reduces the lift slope, but the lift coefficient is unchanged at a high angle of attack. Drag coefficient was reduced across the angles of attack with increasing the sweep angles. The drag polars suggest the sweep angle may be adjusted with the change in swimming speed and anhedral (negative dihedral) angle to minimise drag while maintaining the vertical force balance to counteract the positive buoyancy. This will effectively expand the swimming envelope of the gliding penguin, similar to a flying counterpart such as swift.


Author(s):  
Wan Mazlina Wan Mohamed ◽  
Mohd Azmi Ismail ◽  
Muhammad Ridzwan Ramli ◽  
Aliff Farhan Mohd Yamin ◽  
Koay Mei Hyie ◽  
...  

Unmanned aerial vehicle is becoming increasingly popular each year. Now, aeronautical researchers are focusing on size minimization of unmanned aerial vehicle, especially drone and micro aerial vehicle. The lift coefficient of micro aerial vehicle has wing dimension of 12 cm and mass of less than 7 g. In the present study, with the aid of 3D printer, polylactic acid material was used to develop the micro aerial vehicle structure for tandem wing arrangement. The materials for rigid wing skin and flexible wing skin were laminating film and latex membrane, respectively. The present work elaborates the lift coefficient profiles on rigid wing skin and flexible wing skin at wing flapping frequency of 11 Hz, three different Reynolds numbers of 14000, 19000 and 24000, and five different angles of attacks between 0° and 50°. According to the results obtained, the lift coefficient decreased as the Reynolds number increased. The lift coefficient increased up to 9 as the angle of attack increased from 0° to 50° at the Reynolds number of 14000 for flexible wing skin. The results also showed that the lift coefficient of flexible wing skin was higher than that of rigid wing skin at the attack angle of10° and below, except for the Reynolds number of 14000.


Sign in / Sign up

Export Citation Format

Share Document