scholarly journals Development and Flight Test of Moving-mass Actuated Unmanned Aerial Vehicle

Author(s):  
Sampath Reddy Vengate ◽  
Sukru A. Erturk ◽  
Atilla Dogan
2019 ◽  
Vol 256 ◽  
pp. 02004
Author(s):  
Nornashiha Mohd Saad ◽  
Wirachman Wisnoe ◽  
Rizal Effendy Mohd Nasir ◽  
Zurriati Mohd Ali ◽  
Ehan Sabah Shukri Askari

This paper presents an aerodynamic characteristic study in longitudinal direction of UiTM Blended Wing Body-Unmanned Aerial Vehicle Prototype (BWB-UAV Prototype) equipped with horizontal stabilizers. Flight tests have been conducted and as the result, BWB experienced overturning condition at certain angle of attack. Horizontal stabilizer was added at different location and size to overcome the issue during the flight test. Therefore, Computational Fluid Dynamics (CFD) analysis is performed at different configuration of horizontal stabilizer using Spalart - Allmaras as a turbulence model. CFD simulation of the aircraft is conducted at Mach number 0.06 or v = 20 m/s at various angle of attack, α. The data of lift coefficient (CL), drag coefficient (CD), and pitching moment coefficient (CM) is obtained from the simulations. The data is represented in curves against angle of attack to measure the performance of BWB prototype with horizontal stabilizer. From the simulation, configuration with far distance and large horizontal stabilizer gives steeper negative pitching moment slope indicating better static stability of the aircraft.


2018 ◽  
Vol 159 ◽  
pp. 02045
Author(s):  
Mochammad Ariyanto ◽  
Joga D. Setiawan ◽  
Teguh Prabowo ◽  
Ismoyo Haryanto ◽  
Munadi

This research will try to design a low cost of fixed-wing unmanned aerial vehicle (UAV) using low-cost material that able to fly autonomously. Six parameters of UAV’s structure will be optimized based on basic airframe configuration, wing configuration, straight wing, tail configuration, fuselage material, and propeller location. The resulted and manufactured prototype of fixed-wing UAV will be tested in autonomous fight tests. Based on the flight test, the developed UAV can successfully fly autonomously following the trajectory command. The result shows that low-cost material can be used as a body part of fixed-wing UAV.


Author(s):  
Kun Chen ◽  
Zhiwei Shi ◽  
Jiachen Zhu ◽  
Haiyang Wang ◽  
Junquan Fu

To explore the control efficiency of circulation flow control technology, a circulation control actuator with an independent gas source has been designed and applied in roll attitude control of a small unmanned aerial vehicle. The circulation control devices are arranged at the two ends of the wing on an unmanned aerial vehicle scale model, the changes in aerodynamic force and aerodynamic moment caused by turning on the actuator are measured in a wind tunnel, and the flow field characteristics are analysed using particle image velocimetry technology. The flight control effect of the roll attitude is verified via a flight test. Experimental and flight test results show that the control of roll attitude can be achieved by turning on the circulation control actuator on one side, and the maximum efficiency that the circulation control generates is equivalent to 8° aileron deflection with production of a favorable yaw moment to achieve a coordinated turn. The circulation control actuator can increase lift and reduce drag when opened on both sides simultaneously. The maximum lift-to-drag ratio of the UAV increased from 5 to 9, and this approach can also suppress flow separation and delay stall at high angles of attack. The aileron or trailing edge flaps can be replaced with circulation control actuators, and the circulation control technology can also be applied to aerodynamic performance improvement and flight control in other types of aircraft.


2018 ◽  
Vol 6 (4) ◽  
pp. 235-248 ◽  
Author(s):  
Alton Yeung ◽  
Goetz Bramesfeld ◽  
Joon Chung ◽  
Stephen Foster

A small unmanned aerial vehicle (SUAV) was developed with the specific objective to explore atmospheric wind gusts at low altitudes below 500 m. These gusts have significant impact on the flight characteristics and performance of SUAVs. The SUAV carried an advanced air-data system that includes a five-hole probe, which was adapted for this specific application. In several flight tests the entire test system was qualified and gust data were recorded. The subsequent experimentally derived gust data were post-processed and compared with turbulence spectra of the MIL-HDBK-1797 von Kármán turbulence model. On the day of the flight test, the experimental results did not fully match the prediction of the von Kármán model. Meanwhile, the wind measuring apparatus were proven to be able to measure gust during flight. Therefore, a broader sampling will be required to generalize the gust measurements and be compared with the existing models.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141667814 ◽  
Author(s):  
Chao Chen ◽  
Jiyang Zhang ◽  
Daibing Zhang ◽  
Lincheng Shen

Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.


2010 ◽  
Vol 47 (2) ◽  
pp. 730-732 ◽  
Author(s):  
Seongwook Choi ◽  
Youngshin Kang ◽  
Sungho Chang ◽  
Samok Koo ◽  
Jai Moo Kim

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Daniel R. McArthur ◽  
Arindam B. Chowdhury ◽  
David J. Cappelleri

This paper presents the design of the interacting-BoomCopter (I-BoomCopter) unmanned aerial vehicle (UAV) for mounting a remote sensor package on a vertical surface. Critical to the design is the novel, custom, light-weight passive end effector. The end effector has a forward-facing sonar sensor and in-line force sensor to enable autonomous sensor mounting tasks. The I-BoomCopter's front boom is equipped with a horizontally mounted propeller, which can provide forward and reverse thrust with zero roll and pitch angles. The design and modeling of the updated I-BoomCopter platform is presented along with prototype flight test results. A teleoperated wireless camera sensor mounting task examines the updated platform's suitability for mounting remote sensor packages. Additionally, an autonomous control strategy for remote sensor mounting with the I-BoomCopter is proposed, and autonomous test flights demonstrate the efficacy of the approach.


Author(s):  
Kijoon Kim ◽  
Seungkeun Kim ◽  
Jinyoung Suk ◽  
Jongmin Ahn ◽  
Nakwan Kim ◽  
...  

This paper investigates experimental evaluation via flight tests for applying adaptive neural network controller to a flying-wing type unmanned aerial vehicle experiencing partial wing-loss. For this, six-degree-of-freedom numerical model is constructed taking into account damage-induced changes to the unmanned aerial vehicle in aerodynamic coefficients, mass, center of gravity, and moments of inertia. Numerical simulations are performed to investigate the flight dynamics change and to verify the performance of the neural network based controller. During the flight test, main wing-loss is artificially generated by 22% or 33% area moment. The flight test verifies that the damaged unmanned aerial vehicle shows drastic roll behavior with the unstable longitudinal response, and the neural network based adaptive controller combined with feedback linearization successfully compensates for the wing damage.


Sign in / Sign up

Export Citation Format

Share Document