Effect of Turbulence Modification on the Near Field of Swirling Jets (Invited)

Author(s):  
Jonathan Naughton ◽  
Stefan Heinz ◽  
D Ewing
2019 ◽  
Vol 60 (12) ◽  
Author(s):  
Jorge A. Ahumada-Lazo ◽  
Fangjun Shu ◽  
Ruey-Hung Chen
Keyword(s):  

Author(s):  
Yi-Huan Kao ◽  
Samir B. Tambe ◽  
San-Mou Jeng

A series of experiments have been conducted to study the aerodynamic characteristics of a confined swirling flow generated by multiple rad-rad swirlers arranged linearly. The rad-rad swirlers used in this study are identical, and consist of an inner, primary swirler generating counter-clockwise rotation and an outer, secondary swirler generating clockwise rotation. A two-component Laser Doppler Velocimetry (LDV) system was employed to measure the velocity in the flow field. Initial measurements were conducted on unconfined and confined flow generated by a single swirler to serve as the baseline reference for the multi-swirler arrangements. Tests were conducted for 3 and 5 swirlers arranged in a line, with a spacing of 2D between the swirler centers, where D is the swirler exit diameter. An additional 5 swirler configuration was tested, where the exit plane of the center swirler was shifted 3.2 mm (1/8 inch) in the streamwise direction. The flow field generated by the multi-swirler arrangement is very complex, due to the interaction between the swirling jets of adjacent swirlers. The number of swirlers is seen to have a clear impact on the entire flow structure, as well as each recirculation zone. For the 3 swirler arrangement, a weak CTRZ is observed for the center swirler, whereas strong CTRZs are observed for the two outer swirlers. For the 5 swirler arrangement, the CTRZ pattern for the 3 inner swirlers is the same strong-weak-strong as seen for the 3 swirler arrangements, with weak CTRZs observed for the two outer swirlers. Higher interaction between swirlers is observed for the 5 swirler arrangement, as compared to the case with 3 swirlers. Since the swirlers are identical, the region between swirlers features merging of two opposing swirling jets, producing high turbulence intensity in the near field region. For the case with the offset center swirler, the swirling jet from this swirler did not merge with its neighbors in the near field region. This resulted in strong CTRZ for the center swirler, accompanied by weaker CTRZs at its immediate neighbors, which is reverse of the CTRZ strength pattern observed for the initial 5 swirler arrangement.


2020 ◽  
Vol 5 (10) ◽  
pp. 1199-1203
Author(s):  
Md. Mosharrof Hossain ◽  
Muhammed Hasnain Kabir Nayeem ◽  
Dr. Md Abu Taher Ali

In this investigation experiment was carried out in 80 mm diameter swirling pipe jet, where swirl was generated by attaching wedge-shaped helixes in the pipe. All measurements were taken at Re 5.3e4. In the plain pipe jet the potential core was found to exist up to x/D=5 but in the swirling jet there was no existence of potential core. The mean velocity profiles were found to be influenced by the presence of wedge-shaped helixes in the pipe. The velocity profiles indicated the presence of sinusoidal flow field in the radial direction existed only in the near field of the jet. This flow field died out after x/D=3 and the existence of jet flow diminished after x/D=5.


2009 ◽  
Author(s):  
J. Naughton ◽  
D. Stanescu ◽  
S. Heinz ◽  
R. Semaan ◽  
M. Stoellinger ◽  
...  

AIAA Journal ◽  
1995 ◽  
Vol 33 (5) ◽  
pp. 876-881 ◽  
Author(s):  
Andrew D. Cutler ◽  
Brian S. Levey ◽  
Donna K. Kraus
Keyword(s):  

Author(s):  
E. Betzig ◽  
A. Harootunian ◽  
M. Isaacson ◽  
A. Lewis

In general, conventional methods of optical imaging are limited in spatial resolution by either the wavelength of the radiation used or by the aberrations of the optical elements. This is true whether one uses a scanning probe or a fixed beam method. The reason for the wavelength limit of resolution is due to the far field methods of producing or detecting the radiation. If one resorts to restricting our probes to the near field optical region, then the possibility exists of obtaining spatial resolutions more than an order of magnitude smaller than the optical wavelength of the radiation used. In this paper, we will describe the principles underlying such "near field" imaging and present some preliminary results from a near field scanning optical microscope (NS0M) that uses visible radiation and is capable of resolutions comparable to an SEM. The advantage of such a technique is the possibility of completely nondestructive imaging in air at spatial resolutions of about 50nm.


2007 ◽  
Author(s):  
Stuart Gregson ◽  
John McCormick ◽  
Clive Parini

Author(s):  
Daqing Cui ◽  
Ylva Ranebo ◽  
Jeanett Low ◽  
Vincenzo Rondinella ◽  
Jinshan Pan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document