Wide-Field Integration Methods for Autonomous Navigation in 3-D Environments

Author(s):  
Andrew Hyslop ◽  
J Sean Humbert
2009 ◽  
pp. 63-71 ◽  
Author(s):  
J. Sean Humbert ◽  
Joseph K. Conroy ◽  
Craig W. Neely ◽  
Geoffrey Barrows

2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Rodrigo Munguía ◽  
Carlos López-Franco ◽  
Emmanuel Nuño ◽  
Adriana López-Franco

This work presents a method for implementing a visual-based simultaneous localization and mapping (SLAM) system using omnidirectional vision data, with application to autonomous mobile robots. In SLAM, a mobile robot operates in an unknown environment using only on-board sensors to simultaneously build a map of its surroundings, which it uses to track its position. The SLAM is perhaps one of the most fundamental problems to solve in robotics to build mobile robots truly autonomous. The visual sensor used in this work is an omnidirectional vision sensor; this sensor provides a wide field of view which is advantageous in a mobile robot in an autonomous navigation task. Since the visual sensor used in this work is monocular, a method to recover the depth of the features is required. To estimate the unknown depth we propose a novel stochastic triangulation technique. The system proposed in this work can be applied to indoor or cluttered environments for performing visual-based navigation when GPS signal is not available. Experiments with synthetic and real data are presented in order to validate the proposal.


2014 ◽  
Vol 9 (1) ◽  
pp. 016012 ◽  
Author(s):  
Kedar D Dimble ◽  
James M Faddy ◽  
J Sean Humbert

2011 ◽  
Vol 64 (3-4) ◽  
pp. 465-487 ◽  
Author(s):  
Peng Xu ◽  
James Sean Humbert ◽  
Pamela Abshire

Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


Sign in / Sign up

Export Citation Format

Share Document