Investigation of Different Active Flow Control Strategies for High Speed Jets Using Synthetic Jet Actuators

Author(s):  
Kerwin Low ◽  
Basman El-Hadidi ◽  
Mark Glauser ◽  
Marlyn Andino ◽  
Reid Berdanier
2000 ◽  
Author(s):  
Fang-Jenq Chen ◽  
Chungsheng Yao ◽  
George Beeler ◽  
Robert Bryant ◽  
Robert Fox

Author(s):  
Pooya Kabiri ◽  
Douglas G. Bohl ◽  
Goodarz Ahmadi

In the last decade, a great deal of interest has been focused on the application of synthetic jet actuators (SJA) for active flow control. SJAs delay separation by injecting vortex pairs into the cross flow and energizing the turbulent boundary layer. The goal of this study was to investigate the effects of the orifice angle on the performance of axisymmetric SJAs. The SJAs used in this experiment were composed of a piezoelectric (PZT) membrane, cavities and orifices. SJA’s with either a straight (90°) or angled (60°) orifices were characterized using hot-wire anemometry and Particle Image Velocimetry (PIV). It was found that the structure of the jet flow changed depending on the angle of the orifice with differences in the resulting vortical structure observed. The peak jet speed was found to be higher for the straight orifice than for the angled orifice contradicting the analytic prediction based on cavity dimension.


Author(s):  
Guang Wang ◽  
Wuli Chu

Abstract In order to weaken the negative effect of tip leakage flow and improve the tip flow condition, this paper introduces synthetic jet into the flow control field of axial compressor, and proposes a method of active flow control by arranging synthetic jet at the tip. A high-speed axial compressor rotor of the author’s research group is taken as the numerical simulation object. On the basis of keeping geometric parameters of the synthetic jet actuator unchanged, this paper studies the influence of applying tip synthetic jet on aerodynamic performance of the compressor rotor at three axial positions of −10%Ca, 0%Ca and 21.35%Ca respectively. The results show that when tip synthetic jet is in the above three positions, comprehensive stability margin of the compressor rotor increases by 2.62%, 3.77% and 12.46% respectively, and efficiency near stall point increases by 0.22%, 0.25 and 0.47% respectively. This shows that when tip synthetic jet is far away from blade, the aerodynamic performance improvement of the compressor rotor is limited, and when tip synthetic jet is just above the leading edge, the effect of expanding stability is the best and the efficiency is the most improved. The mechanism of tip synthetic jet can increase the stability of the compressor rotor is that when the actuator is in the blowing stage, it can blow the low-speed air flow of blade top to downstream, and when the actuator is in the suction stage, it can suck the low-speed air flow of blade top into slot, so as to alleviate the top blockage and realize the stability expansion. The mechanism of tip synthetic jet can improve the efficiency of compressor rotor is that the blowing and suction of actuator weaken the intensity of tip leakage flow, reduce the size of vortex core and also reduce the flow loss of the compressor rotor correspondingly.


2002 ◽  
Vol 124 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Othon K. Rediniotis ◽  
Jeonghwan Ko ◽  
Andrew J. Kurdila

While the potential for the use of synthetic jet actuators to achieve flow control has been noted for some time, most of such flow control studies have been empirical or experimental in nature. Several technical issues must be resolved to achieve rigorous, model-based, closed-loop control methodologies for this class of actuators. The goal of this paper is consequently two-fold. First, we seek to derive and evaluate model order reduction methods based on proper orthogonal decomposition that are suitable for synthetic jet actuators. Second, we seek to derive rigorously stable feedback control laws for the derived reduced order models. The realizability of the control strategies is discussed, and a numerical study of the effectiveness of the reduced order models for two-dimensional flow near the jet exit is summarized.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 77 ◽  
Author(s):  
Haohua Zong ◽  
Matteo Chiatto ◽  
Marios Kotsonis ◽  
Luigi de Luca

The plasma synthetic jet actuator (PSJA), also named as sparkjet actuator, is a special type of zero-net mass flux actuator, driven thermodynamically by pulsed arc/spark discharge. Compared to widely investigated mechanical synthetic jet actuators driven by vibrating diaphragms or oscillating pistons, PSJAs exhibit the unique capability of producing high-velocity (>300 m/s) pulsed jets at high frequency (>5 kHz), thus tailored for high-Reynolds-number high-speed flow control in aerospace engineering. This paper reviews the development of PSJA in the last 15 years, covering the major achievements in the actuator working physics (i.e., characterization in quiescent air) as well as flow control applications (i.e., interaction with external crossflow). Based on the extensive non-dimensional laws obtained in characterization studies, it becomes feasible to design an actuator under several performance constraints, based on first-principles. The peak jet velocity produced by this type of actuator scales approximately with the cubic root of the non-dimensional energy deposition, and the scaling factor is determined by the electro-mechanical efficiency of the actuator (O(0.1%–1%)). To boost the electro-mechanical efficiency, the energy losses in the gas heating phase and thermodynamic cycle process should be minimized by careful design of the discharge circuitry as well as the actuator geometry. Moreover, the limit working frequency of the actuator is set by the Helmholtz natural resonance frequency of the actuator cavity, which can be tuned by the cavity volume, exit orifice area and exit nozzle length. In contrast to the fruitful characterization studies, the application studies of PSJAs have progressed relatively slower, not only due to the inherent difficulties of performing advanced numerical simulations/measurements in high-Reynolds-number high-speed flow, but also related to the complexity of designing a reliable discharge circuit that can feed multiple actuators at high repetition rate. Notwithstanding these limitations, results from existing investigations are already sufficient to demonstrate the authority of plasma synthetic jets in shock wave boundary layer interaction control, jet noise mitigation and airfoil trailing-edge flow separation.


2020 ◽  
Vol 117 (42) ◽  
pp. 26091-26098
Author(s):  
Dixia Fan ◽  
Liu Yang ◽  
Zhicheng Wang ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We have demonstrated the effectiveness of reinforcement learning (RL) in bluff body flow control problems both in experiments and simulations by automatically discovering active control strategies for drag reduction in turbulent flow. Specifically, we aimed to maximize the power gain efficiency by properly selecting the rotational speed of two small cylinders, located parallel to and downstream of the main cylinder. By properly defining rewards and designing noise reduction techniques, and after an automatic sequence of tens of towing experiments, the RL agent was shown to discover a control strategy that is comparable to the optimal strategy found through lengthy systematically planned control experiments. Subsequently, these results were verified by simulations that enabled us to gain insight into the physical mechanisms of the drag reduction process. While RL has been used effectively previously in idealized computer flow simulation studies, this study demonstrates its effectiveness in experimental fluid mechanics and verifies it by simulations, potentially paving the way for efficient exploration of additional active flow control strategies in other complex fluid mechanics applications.


Sign in / Sign up

Export Citation Format

Share Document