analytic prediction
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 929 ◽  
Author(s):  
J.D. Sherwood ◽  
S. Ghosal

Electrophoresis of a tightly fitting sphere of radius $a$ along the centreline of a liquid-filled circular cylinder of radius $R$ is studied for a gap width $h_0=R-a\ll a$ . We assume a Debye length $\kappa ^{-1}\ll h_0$ , so that surface conductivity is negligible for zeta potentials typically seen in experiments, and the Smoluchowski slip velocity is imposed as a boundary condition at the solid surfaces. The pressure difference between the front and rear of the sphere is determined. If the cylinder has finite length $L$ , this pressure difference causes an additional volumetric flow of liquid along the cylinder, increasing the electrophoretic velocity of the sphere, and an analytic prediction for this increase is found when $L\gg R$ . If $N$ identical, well-spaced spheres are present, the electrophoretic velocity of the spheres increases with $N$ , in agreement with the experiments of Misiunas & Keyser (Phys. Rev. Lett., vol. 122, 2019, 214501).


2021 ◽  
Vol 922 (1) ◽  
pp. 89
Author(s):  
Masato Shirasaki ◽  
Tomoaki Ishiyama ◽  
Shin’ichiro Ando

Abstract We study halo mass functions with high-resolution N-body simulations under a ΛCDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the Planck satellite. We calibrate the halo mass functions for 108.5 ≲ M vir/(h −1 M ⊙) ≲ 1015.0–0.45 z , where M vir is the virial spherical-overdensity mass and redshift z ranges from 0 to 7. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision, except for the highest masses at z ≤ 7. Our model predicts that the analytic prediction in Sheth & Tormen would overestimate the halo abundance at z = 6 with M vir = 108.5–10 h −1 M ⊙ by 20%–30%. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-z galaxy number counts. We compare a cumulative luminosity function of galaxies at z = 6 with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than 2.71 keV is incompatible with the observed galaxy number density at a 2σ confidence level.


2020 ◽  
Vol 75 (5) ◽  
pp. 403-411 ◽  
Author(s):  
Lennart Dabelow ◽  
Peter Reimann

AbstractEcho protocols provide a means to investigate the arrow of time in macroscopic processes. Starting from a nonequilibrium state, the many-body quantum system under study is evolved for a certain period of time τ. Thereafter, an (effective) time reversal is performed that would – if implemented perfectly – take the system back to the initial state after another time period τ. Typical examples are nuclear magnetic resonance imaging and polarisation echo experiments. The presence of small, uncontrolled inaccuracies during the backward propagation results in deviations of the “echo signal” from the original evolution and can be exploited to quantify the instability of nonequilibrium states and the irreversibility of the dynamics. We derive an analytic prediction for the typical dependence of this echo signal for macroscopic observables on the magnitude of the inaccuracies and on the duration τ of the process, and verify it in numerical examples.


2020 ◽  
Vol 494 (2) ◽  
pp. 2628-2640 ◽  
Author(s):  
Daniel D Kelson ◽  
Louis E Abramson ◽  
Andrew J Benson ◽  
Shannon G Patel ◽  
Stephen A Shectman ◽  
...  

ABSTRACT A key obstacle to developing a satisfying theory of galaxy evolution is the difficulty in extending analytic descriptions of early structure formation into full non-linearity, the regime in which galaxy growth occurs. Extant techniques, though powerful, are based on approximate numerical methods whose Monte Carlo-like nature hinders intuition building. Here, we develop a new solution to this problem and its empirical validation. We first derive closed-form analytic expectations for the evolution of fixed percentiles in the real-space cosmic density distribution, averaged over representative volumes observers can track cross-sectionally. Using the Lagrangian forms of the fluid equations, we show that percentiles in δ – the density relative to the median – should grow as $\delta (t)\propto \delta _{0}^{\alpha }\, t^{\beta }$, where α ≡ 2 and β ≡ 2 for Newtonian gravity at epochs after the overdensities transitioned to non-linear growth. We then use 9.5 square degress of Carnegie-Spitzer-IMACS Redshift Survey data to map galaxy environmental densities over 0.2 < z < 1.5 (∼7 Gyr) and infer α = 1.98 ± 0.04 and β = 2.01 ± 0.11 – consistent with our analytic prediction. These findings – enabled by swapping the Eulerian domain of most work on density growth for a Lagrangian approach to real-space volumetric averages – provide some of the strongest evidence that a lognormal distribution of early density fluctuations indeed decoupled from cosmic expansion to grow through gravitational accretion. They also comprise the first exact, analytic description of the non-linear growth of structure extensible to (arbitrarily) low redshift. We hope these results open the door to new modelling of, and insight-building into, galaxy growth and its diversity in cosmological contexts.


2019 ◽  
Vol 98 (4) ◽  
pp. 2755-2773 ◽  
Author(s):  
S. Ponsioen ◽  
T. Pedergnana ◽  
G. Haller

2019 ◽  
Vol 871 ◽  
Author(s):  
Xi Chen ◽  
Fazle Hussain ◽  
Zhen-Su She

As a counterpart of energy cascade, turbulent momentum cascade (TMC) in the wall-normal direction is important for understanding wall turbulence. Here, we report an analytic prediction of non-universal Reynolds number ($Re_{\unicode[STIX]{x1D70F}}$) scaling transition of the maximum TMC located at $y_{p}$. We show that in viscous units,$y_{p}^{+}$(and$1+\overline{u^{\prime }v^{\prime }}_{p}^{+}$) displays a scaling transition from$Re_{\unicode[STIX]{x1D70F}}^{3/7}$($Re_{\unicode[STIX]{x1D70F}}^{-6/7}$) to$Re_{\unicode[STIX]{x1D70F}}^{3/5}$($Re_{\unicode[STIX]{x1D70F}}^{-3/5}$) in turbulent boundary layer, in sharp contrast to that from$Re_{\unicode[STIX]{x1D70F}}^{1/3}$($Re_{\unicode[STIX]{x1D70F}}^{-2/3}$) to$Re_{\unicode[STIX]{x1D70F}}^{1/2}$($Re_{\unicode[STIX]{x1D70F}}^{-1/2}$) in a channel/pipe, countering the prevailing view of a single universal near-wall scaling. This scaling transition reflects different near-wall motions in the buffer layer for small$Re_{\unicode[STIX]{x1D70F}}$and log layer for large $Re_{\unicode[STIX]{x1D70F}}$, with the non-universality being ascribed to the presence/absence of mean wall-normal velocity $V$. Our predictions are validated by a large set of data, and a probable flow state with a full coupling between momentum and energy cascades beyond a critical$Re_{\unicode[STIX]{x1D70F}}$is envisaged.


Sign in / Sign up

Export Citation Format

Share Document