Shear Excitation Effects on Coaxial Swirling Jets

Author(s):  
Wonjoong Lee ◽  
Youngmin Park ◽  
Ray Taghavi
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1860
Author(s):  
Eugene Talygin ◽  
Alexander Gorodkov

Previously, it has been shown that the dynamic geometric configuration of the flow channel of the left heart and aorta corresponds to the direction of the streamlines of swirling flow, which can be described using the exact solution of the Navier–Stokes and continuity equations for the class of centripetal swirling viscous fluid flows. In this paper, analytical expressions were obtained. They describe the functions C0t and Г0t, included in the solutions, for the velocity components of such a flow. These expressions make it possible to relate the values of these functions to dynamic changes in the geometry of the flow channel in which the swirling flow evolves. The obtained expressions allow the reconstruction of the dynamic velocity field of an unsteady potential swirling flow in a flow channel of arbitrary geometry. The proposed approach can be used as a theoretical method for correct numerical modeling of the blood flow in the heart chambers and large arteries, as well as for developing a mathematical model of blood circulation, considering the swirling structure of the blood flow.


1989 ◽  
Author(s):  
M. NIKJOOY ◽  
H. MONGIA ◽  
G. SAMUELSEN ◽  
V. MCDONELL

1979 ◽  
Vol 14 (1) ◽  
pp. 19-26 ◽  
Author(s):  
M. A. Gol'dshtik
Keyword(s):  

2016 ◽  
Vol 28 (7) ◽  
pp. 075104 ◽  
Author(s):  
V. Stetsyuk ◽  
N. Soulopoulos ◽  
Y. Hardalupas ◽  
A. M. K. P. Taylor

2002 ◽  
Vol 459 ◽  
pp. 371-396 ◽  
Author(s):  
C. OLENDRARU ◽  
A. SELLIER

The effects of viscosity on the instability properties of the Batchelor vortex are investigated. The characteristics of spatially amplified branches are first documented in the convectively unstable regime for different values of the swirl parameter q and the co-flow parameter a at several Reynolds numbers Re. The absolute–convective instability transition curves, determined by the Briggs–Bers zero-group velocity criterion, are delineated in the (a, q)-parameter plane as a function of Re. The azimuthal wavenumber m of the critical transitional mode is found to depend on the magnitude of the swirl q and on the jet (a > −0.5) or wake (a < −0.5) nature of the axial flow. At large Reynolds numbers, the inviscid results of Olendraru et al. (1999) are recovered. As the Reynolds number decreases, the pocket of absolute instability in the (a, q)-plane is found to shrink gradually. At Re = 667; the critical transitional modes for swirling jets are m = −2 or m = −3 and absolute instability prevails at moderate swirl values even in the absence of counterflow. For higher swirl levels, the bending mode m = −1 becomes critical. The results are in good overall agreement with those obtained by Delbende et al. (1998) at the same Reynolds number. However, a bending (m = +1) viscous mode is found to partake in the outer absolute–convective instability transition for jets at very low positive levels of swirl. This asymmetric branch is the spatial counterpart of the temporal viscous mode isolated by Khorrami (1991) and Mayer & Powell (1992). At Re = 100, the critical transitional mode for swirling jets is m = −2 at moderate and high swirl values and, in order to trigger an absolute instability, a slight counterflow is always required. A bending (m = +1) viscous mode again becomes critical at very low swirl values. For wakes (a < −0.5) the critical transitional mode is always found to be the bending mode m = −1, whatever the Reynolds number. However, above q = 1.5, near-neutral centre modes are found to define a tongue of weak absolute instability in the (a, q)-plane. Such modes had been analytically predicted by Stewartson & Brown (1985) in a strictly temporal inviscid framework.


Sign in / Sign up

Export Citation Format

Share Document