Computational Fluid Dynamics Studies of a Flapping Wing Nano Air Vehicle

Author(s):  
Ravi Ramamurti ◽  
Jason Geder ◽  
William Sandberg ◽  
Anita Flynn
2011 ◽  
Vol 291-294 ◽  
pp. 1543-1546
Author(s):  
Yi Qin ◽  
Wei Ping Zhang ◽  
Wen Yuan Cheng ◽  
Wu Liu ◽  
Hong Yi Li ◽  
...  

This paper introduces a biological flapping micro air vehicle (FMAV) with four wings, instead of two wings, where wing clap-and-fling of real insects has been mimicked. The total weight is 2.236g. A spatial linkage is implemented in the flapping wing system, which is symmetry. This can prevent the flapping wing MAV from tilting toward the left or the right in the course of flight. By using the computational fluid dynamics (CFD), it has been confirmed that the flapping wing system can utilize the clap-and-fling mechanism, which is essential to enhance the lift and thrust in the insect flight.


2005 ◽  
Vol 109 (1097) ◽  
pp. 337-347 ◽  
Author(s):  
R. Ramamurti ◽  
W. Sandberg ◽  
P. Vaiana ◽  
J. Kellogg ◽  
D. Cylinder

Abstract Two unconventional micro air vehicles developed by the Naval Research Laboratory are described. One of the vehicles employs flapping wings which is inspired by the flight of birds or insects but does not copy it directly. The second vehicle is a stop-rotor hybrid vehicle employing a pair of single blade, rotary/fixed wing panels, attached at their roots to separate coaxial shafts. An unstructured grid based incompressible flow solver, called feflo, is used to simulate the flow past these novel configurations in order to determine the flight characteristics of these vehicles.


2019 ◽  
Vol 11 (6) ◽  
pp. 168781401985729 ◽  
Author(s):  
Abdelrahman Kasem ◽  
Ahmad Gamal ◽  
Amr Hany ◽  
Hesham Gaballa ◽  
Karim Ahmed ◽  
...  

The article aims to prove the effectiveness of the proposed unmanned air vehicle design (The Propulsive Wing) through numerical and experimental means. The propulsive wing unmanned air vehicle is a completely new class of unmanned air vehicle, making disruptive changes in the aircraft industry. It is based on a distributed cross-flow electric fan propulsion system. When the fan starts to operate, the flow is drawn from the suction surface, provided by energy through the fan and expelled out of the airfoil trailing edge (TE). This causes a significant lift increase and drag reduction with respect to ordinary aircrafts, making it perfect for applications requiring low cruise speed such as firefighting, agriculture, and aerial photography. In this early stage of the investigation, our main aim is to prove that this design is applicable and the expected aerodynamic and propulsion improvements are achievable. This is done through a two-dimensional computational fluid dynamics investigation of the flow around an airfoil with an embedded cross-flow fan near its TE. A scaled wind tunnel model of the same geometry used in the computational fluid dynamics investigation was manufactured and used to perform wind tunnel testing. The computational fluid dynamics and wind tunnel results are compared for validation. Furthermore, an unmanned air vehicle model was designed and manufactured to prove that the propulsive wing concept is flyable. The article shows that the aerodynamic forces developed on the cross-flow fan airfoil are not only functions of Reynolds number and angle of attack as for standard airfoils but also function of the fan rotational speed. The results show the great effect of the rotational speed of fan on lift augmentation and thrust generation through the high momentum flow getting out of the fan nozzle. Wind tunnel tests show that the suction effect of the fan provides stall free operation up to very high angles of attack (40 degrees) leading to unprecedented values of lift coefficient up to 5.8. The flight test conducted showed the great potential of the new aircraft to perform the expected low cruise speed and high angles of attack flight.


Author(s):  
M. Carri‚n ◽  
M. Biava ◽  
R. Steijl ◽  
G. N. Barakos ◽  
D. Stewart

Author(s):  
Mehdi Ghommem ◽  
Mostafa Hassanalian ◽  
Majed Al-Marzooqi ◽  
Glen Throneberry ◽  
Abdessattar Abdelkefi

The design, manufacturing, experimentation, performance analysis, and flight test for a biplane flapping wing nano air vehicle, capable of both forward and hovering flight are presented. To design this nano air vehicle, a comprehensive sizing method based on theoretical and statistical analyses is proposed and experimentally verified. Then, aerodynamic analyses based on quasi-steady and strip theory methods are conducted to select the optimum values for the kinematics. To evaluate the proposed conceptual design obtained from the sizing methodology and aerodynamic analyses, an experimental setup deploying strain gauges mounted on a thin aluminum plate is implemented. This setup is also deployed to identify the wing configuration resulting in the highest thrust generation and lowest power consumption. The experimental results are found in a good agreement with the aerodynamic simulations. To ensure the stability of the air vehicle and a smooth transition between the different flying modes, magnetic coils are mounted on the tail to actuate the elevator and rudder. A flight test was successfully performed indoor to demonstrate the flying capabilities of the air vehicle and the camera showed a clear visual inspection of the area. It showed stable behavior especially during the transition from forward flight to hovering and superior flight endurance in comparison to similar air vehicles reported in the literature. The proposed and applied design methodologies along with the manufacturing process are expected to provide useful guidelines to design and manufacture different types of flapping wings to support various applications.


Sign in / Sign up

Export Citation Format

Share Document