Sizing process, aerodynamic analysis, and experimental assessment of a biplane flapping wing nano air vehicle

Author(s):  
Mehdi Ghommem ◽  
Mostafa Hassanalian ◽  
Majed Al-Marzooqi ◽  
Glen Throneberry ◽  
Abdessattar Abdelkefi

The design, manufacturing, experimentation, performance analysis, and flight test for a biplane flapping wing nano air vehicle, capable of both forward and hovering flight are presented. To design this nano air vehicle, a comprehensive sizing method based on theoretical and statistical analyses is proposed and experimentally verified. Then, aerodynamic analyses based on quasi-steady and strip theory methods are conducted to select the optimum values for the kinematics. To evaluate the proposed conceptual design obtained from the sizing methodology and aerodynamic analyses, an experimental setup deploying strain gauges mounted on a thin aluminum plate is implemented. This setup is also deployed to identify the wing configuration resulting in the highest thrust generation and lowest power consumption. The experimental results are found in a good agreement with the aerodynamic simulations. To ensure the stability of the air vehicle and a smooth transition between the different flying modes, magnetic coils are mounted on the tail to actuate the elevator and rudder. A flight test was successfully performed indoor to demonstrate the flying capabilities of the air vehicle and the camera showed a clear visual inspection of the area. It showed stable behavior especially during the transition from forward flight to hovering and superior flight endurance in comparison to similar air vehicles reported in the literature. The proposed and applied design methodologies along with the manufacturing process are expected to provide useful guidelines to design and manufacture different types of flapping wings to support various applications.

Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 39
Author(s):  
P. Lane ◽  
G. Throneberry ◽  
I. Fernandez ◽  
M. Hassanalian ◽  
R. Vasconcellos ◽  
...  

Throughout the last decade, there has been an increased demand for intricate flapping-wing drones with different capabilities than larger drones. The design of flapping-wing drones is focused on endurance and stability, as these are two of the main challenges of these systems. Researchers have recently been turning towards bioinspiration as a way to enhance aerodynamic performance. In this work, the propulsion system of a flapping-wing micro air vehicle is investigated to identify the limitations and drawbacks of specific designs. Each system has a tandem wing configuration inspired by a dragonfly, with wing shapes inspired by a bumblebee. For the design of this flapping-wing, a sizing process is carried out. A number of actuation mechanisms are considered, and two different mechanisms are designed and integrated into a flapping-wing system and compared to one another. The second system is tested using a thrust stand to investigate the impact of wing configurations on aerodynamic force production and the trend of force production from varying flapping frequency. Results present the optimal wing configuration of those tested and that an angle of attack of two degrees yields the greatest force production. A tethered flight test is conducted to examine the stability and aerodynamic capabilities of the drone, and challenges of flapping-wing systems and solutions that can lead to successful flight are presented. Key challenges to the successful design of these systems are weight management, force production, and stability and control.


2020 ◽  
Vol 12 ◽  
pp. 175682932094308
Author(s):  
Shaoran Liang ◽  
Bifeng Song ◽  
Jianlin Xuan ◽  
Yubin Li

This paper proposes an attitude control scheme for the Dove flapping wing micro air vehicle in intermittent flapping and gliding flight. The Dove flapping wing micro air vehicle adopts intermittent flapping and gliding flight to make the wing movements more natural; this strategy also has the potential to reduce energy consumption. To implement this specific flight mode, this paper proposes a closed-loop active disturbance rejection control strategy to stabilize the attitude during the processes of flapping flight, transition and gliding flight. The active disturbance rejection control controller is composed of three parts: a tracking differentiator, a linear extended state observer and a nonlinear state error feedback controller. The tracking differentiator estimates the given target signal and the differential signal in real time. The extended state observer estimates the system states and system nonlinearity. Moreover, the bandwidth parameterization method is applied to determine the observer gains. The stability of the closed-loop system is verified using Lyapunov’s theorem. Several outdoor flight experiments have been conducted to verify the effectiveness of the proposed control method, and the results show that the proposed method can guarantee the stability of intermittent flapping and gliding flight.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1270
Author(s):  
Xiang Lu ◽  
Chengxiang Wang ◽  
Kun Lu ◽  
Xiang Xi ◽  
Yulie Wu ◽  
...  

Microrobots have a wide range of applications. The rigid–flexible composite stereoscopic technology based on ultraviolet laser cutting technology is primarily researched for the design and manufacture of microrobots and has been used to fabricate microscale motion mechanisms and robots. This paper introduces a monolithic processing technology based on the rigid–flexible composite stereoscopic process. Based on this process, a split-actuator micro flapping-wing air vehicle with a size of 15 mm × 2.5 mm × 30 mm was designed. We proposed a batch manufacturing method capable of processing multiple micro air vehicles at the same time. The main structure of 22 flapping-wing micro air vehicles can be processed at the same time within the processing range of the composite sheet with an area of 80 mm × 80 mm, and the processing effect is good.


Author(s):  
Mehdi Ghommem ◽  
Glen Throneberry ◽  
Mostafa Hassanalian ◽  
Majed Al-Marzooqi ◽  
Noora Al-Zaabi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document