Shape Memory Polymer Actuator Patches for Shape Adjustment of Fiber Composite Parts

Author(s):  
Stephan Rapp ◽  
Horst Baier
Author(s):  
Fabrizio Quadrini ◽  
Giovanni Matteo Tedde ◽  
Loredana Santo

Shape memory composites combine structural properties of continuous-fiber polymer-matrix composites with functional behavior of shape memory polymers. In this study, the production of shape memory composite structures for aerospace applications is described. Small-scale grabbing systems were prototyped as they could be used for space cleaning operations. Composite hands were manufactured by using two carbon fiber composite layers with a shape memory polymer interlayer. They were produced in the closed-hand configuration and subsequently opened in the memorizing step. Due to heating, composites tended to recover the initial closed configuration, allowing to grab small objects. Two different shapes (cylindrical and cubic) were considered for composite hands. In the first case, the shape memory behavior was given to the entire structure whereas, in the second case, shape memory properties were provided only to folding zones. As a result, a good shape recovery was observed in both cases but part weight was already not negligible also in these small-scale systems.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2351-2356 ◽  
Author(s):  
YAN-JU LIU ◽  
XIN LAN ◽  
HAI-BAO LU ◽  
JIN-SONG LENG

Smart materials can be defined as materials that sense and react to environmental conditions or stimuli. In recent years, a wide range of novel smart materials have been developed in biomaterials, sensors, actuators, etc. Their applications cover aerospace, automobile, telecommunications, etc. This paper presents some recent progresses in polymeric smart materials. Special emphasis is laid upon electroactive polymer (EAP), shape memory polymer (SMP) and their composites. For the electroactive polymer, an analysis of stability of dielectric elastomer using strain energy function is derived, and one type of electroactive polymer actuator is presented. For the shape memory polymer, a new method is developed to use infrared laser to actuate the SMP through the optical fiber embedded within the SMP. Electrically conductive nanocarbon powders are utilized as the fillers to improve the electrical conductivity of polymer. A series of fundamental investigations of electroactive SMP are performed and the shape recovery is demonstrated.


Author(s):  
Loredana Santo ◽  
Giovanni Matteo Tedde ◽  
Fabrizio Quadrini

Shape memory polymer (SMP) foams can be used to manufacture actuators with tailored actuation rate. Being related to foam shape recovery by heating, SMP actuator operates by conversion of heat into motion. In the current study, a SMP linear actuator has been manufactured which is able to apply a maximum load of 50 N (depending on the recovery temperature) and a maximum stroke up to 30 mm. The actuator had a cylindrical shape and its piston had a diameter of 16 mm, therefore a maximum applied pressure about 2.5 bar. The active element (i.e. SMP foam) was produced by solid state foaming of an epoxy resin, and its shaping was performed in the same metallic frame of the actuator. Results show that small and medium-size actuators can be easily produced and operated.


2013 ◽  
Vol 333-335 ◽  
pp. 1926-1929 ◽  
Author(s):  
Da Wei Zhang ◽  
Jia Jia Zhang ◽  
Rui Wei ◽  
Jing Wen Xia ◽  
Dan Ni Jiao ◽  
...  

Deployable flexible displays attract a great attention recently. The flexible display used on electronic equipment have been developed, which can deploy to reveal a much larger screen or rolled up. However, one of major problems is its actuation of deployment and fixture. In this paper, a deployable display actuated by the SMP actuator is proposed. The shape memory polymer (SMP) actuator, which is considered to be attached to the back side of a flexible display, is used to deploy and fix the flexible display. A new method of laser-induced actuation of SMP actuator is investigated. By this method, the SMP can be induced by infrared light transmitted through a treated optical fiber embedded in the actuator.


2016 ◽  
Vol 879 ◽  
pp. 1645-1650 ◽  
Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Fabrizio Quadrini

Shape memory composite (SMC) structures are of great interest for the aerospace applications. In previous works, the authors have studied SMC lab-scale deploying prototypes manufactured by using two carbon fiber composite layers with a shape memory polymer interlayer. The prototypes were produced in an initial configuration and subsequently it was changed in the memorizing step. The initial configuration was then recovered by heating. Memorization and recovery phases were performed by means of conventional heating (by hot air gun or heater plate). In this work, for the first time the authors evaluate the SMC heating by means of radiating lamps. A square plate was purposely produced and recovered after different memory steps. Time, temperature and recovery are measured during and after the tests. The radiating lamp power and type, and the distance of the SMC from the lamp are fundamental parameters for the heating phase. As result of the irradiation tests, the initial configuration can be successfully recovered without failures. This study is especially aimed to future space applications in which the deployment (recovery) phase will be initiated only by exposure to solar radiation.


2004 ◽  
Author(s):  
Nam S. Goo ◽  
Il H. Paik ◽  
Kwang J. Yoon ◽  
Yong C. Jung ◽  
Jae W. Cho

Sign in / Sign up

Export Citation Format

Share Document