Development of Flame Retardant Shape Memory Polymer (SMP) Flax Fiber Composite by Using Organic Polydopamine (PDA) Coating and Nanoparticles

Author(s):  
Mehmet Fatih Öktem ◽  
Bahadır Aydaş
Author(s):  
Fabrizio Quadrini ◽  
Giovanni Matteo Tedde ◽  
Loredana Santo

Shape memory composites combine structural properties of continuous-fiber polymer-matrix composites with functional behavior of shape memory polymers. In this study, the production of shape memory composite structures for aerospace applications is described. Small-scale grabbing systems were prototyped as they could be used for space cleaning operations. Composite hands were manufactured by using two carbon fiber composite layers with a shape memory polymer interlayer. They were produced in the closed-hand configuration and subsequently opened in the memorizing step. Due to heating, composites tended to recover the initial closed configuration, allowing to grab small objects. Two different shapes (cylindrical and cubic) were considered for composite hands. In the first case, the shape memory behavior was given to the entire structure whereas, in the second case, shape memory properties were provided only to folding zones. As a result, a good shape recovery was observed in both cases but part weight was already not negligible also in these small-scale systems.


2016 ◽  
Vol 879 ◽  
pp. 1645-1650 ◽  
Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Fabrizio Quadrini

Shape memory composite (SMC) structures are of great interest for the aerospace applications. In previous works, the authors have studied SMC lab-scale deploying prototypes manufactured by using two carbon fiber composite layers with a shape memory polymer interlayer. The prototypes were produced in an initial configuration and subsequently it was changed in the memorizing step. The initial configuration was then recovered by heating. Memorization and recovery phases were performed by means of conventional heating (by hot air gun or heater plate). In this work, for the first time the authors evaluate the SMC heating by means of radiating lamps. A square plate was purposely produced and recovered after different memory steps. Time, temperature and recovery are measured during and after the tests. The radiating lamp power and type, and the distance of the SMC from the lamp are fundamental parameters for the heating phase. As result of the irradiation tests, the initial configuration can be successfully recovered without failures. This study is especially aimed to future space applications in which the deployment (recovery) phase will be initiated only by exposure to solar radiation.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4254
Author(s):  
Paulina A. Quiñonez ◽  
Leticia Ugarte-Sanchez ◽  
Diego Bermudez ◽  
Paulina Chinolla ◽  
Rhyan Dueck ◽  
...  

The work presented here describes a paradigm for the design of materials for additive manufacturing platforms based on taking advantage of unique physical properties imparted upon the material by the fabrication process. We sought to further investigate past work with binary shape memory polymer blends, which indicated that phase texturization caused by the fused filament fabrication (FFF) process enhanced shape memory properties. In this work, two multi-constituent shape memory polymer systems were developed where the miscibility parameter was the guide in material selection. A comparison with injection molded specimens was also carried out to further investigate the ability of the FFF process to enable enhanced shape memory characteristics as compared to other manufacturing methods. It was found that blend combinations with more closely matching miscibility parameters were more apt at yielding reliable shape memory polymer systems. However, when miscibility parameters differed, a pathway towards the creation of shape memory polymer systems capable of maintaining more than one temporary shape at a time was potentially realized. Additional aspects related to impact modifying of rigid thermoplastics as well as thermomechanical processing on induced crystallinity are also explored. Overall, this work serves as another example in the advancement of additive manufacturing via materials development.


2021 ◽  
pp. 2102473
Author(s):  
Wenjun Peng ◽  
Guogao Zhang ◽  
Qian Zhao ◽  
Tao Xie

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1275 ◽  
Author(s):  
Guido Ehrmann ◽  
Andrea Ehrmann

Poly(lactic acid) is not only one of the most often used materials for 3D printing via fused deposition modeling (FDM), but also a shape-memory polymer. This means that objects printed from PLA can, to a certain extent, be deformed and regenerate their original shape automatically when they are heated to a moderate temperature of about 60–100 °C. It is important to note that pure PLA cannot restore broken bonds, so that it is necessary to find structures which can take up large forces by deformation without full breaks. Here we report on the continuation of previous tests on 3D-printed cubes with different infill patterns and degrees, now investigating the influence of the orientation of the applied pressure on the recovery properties. We find that for the applied gyroid pattern, indentation on the front parallel to the layers gives the worst recovery due to nearly full layer separation, while indentation on the front perpendicular to the layers or diagonal gives significantly better results. Pressing from the top, either diagonal or parallel to an edge, interestingly leads to a different residual strain than pressing from front, with indentation on top always firstly leading to an expansion towards the indenter after the first few quasi-static load tests. To quantitatively evaluate these results, new measures are suggested which could be adopted by other groups working on shape-memory polymers.


RSC Advances ◽  
2021 ◽  
Vol 11 (32) ◽  
pp. 19616-19622
Author(s):  
Wenbing Li ◽  
Junhao Liu ◽  
Wanting Wei ◽  
Kun Qian

Shape memory polymers can provide excellent bonding property because of their shape memory effects. This paper proposes an adhesive unit that is capable of repeatable smart adhesion and exhibits reversible adhesion under heating.


Sign in / Sign up

Export Citation Format

Share Document