Uniform Particle Regression and Solid Rocket Combustion Instability Suppression

Author(s):  
David R. Greatrix
1999 ◽  
Vol 15 (6) ◽  
pp. 856-860 ◽  
Author(s):  
Igor G. Assovskiy ◽  
Sergei A. Rashkovskiy

2021 ◽  
Author(s):  
David R. Greatrix

The ability to understand and predict the expected internal behaviour of a given solid-propellant rocket motor under transient conditions is important. Research towards predicting and quantifying undesirable transient axial combustion instability symptoms necessitates a comprehensive numerical model for internal ballistic simulation under dynamic flow and combustion conditions. A numerical model incorporating pertinent elements, such as a representative transient, frequency-dependent combustion response to pressure wave activity above the burning propellant surface, is applied to the investigation of scale effects (motor size, i.e., grain length and internal port diameter) on influencing instability-related behaviour in a cylindrical-grain motor. The results of this investigation reveal that the motor’s size has a significant influence on transient pressure wave magnitude and structure, and on the appearance and magnitude of an associated base pressure rise.


2021 ◽  
Author(s):  
Christopher Baczynski

A comprehensive numerical model for internal ballistic simulation under dynamic flow, combustion and structural vibration conditions is used to investigate the effectiveness of grain port area transitions of a reference solid rocket motor as a means for suppression of axial combustion instability symptoms. Modification of the propellant grain geometry is one of several traditional means for suppressing symptoms in actual motors. With respect to these symptoms, individual transient simulation runs show the evolution of the axial pressure wave and associated DC shift for the given grain geometry, as initiated by a given pressure disturbance. Limit pressure wave magnitudes are collected for a number of simulation runs for different grain area transition positions, steepness and aspect ratios, and mapped on an attenuation trend chart. Effects of acceleration, through structural vibration of the propellant surface, on the combustion process are investigated, and their influence on the effectiveness of grain area transitions is examined. With or without acceleration/vibrations effects included, the numerical results produced in this study confirm the significant ability of a grain area transition to suppress combustion instability symptoms.


Sign in / Sign up

Export Citation Format

Share Document