Intersections and Opportunities in Human Exploration, Science and Technology Identified in the Mars Program Planning Group

Author(s):  
Michele Gates ◽  
Randolph P. Lillard ◽  
George Tahu ◽  
Michael Wargo ◽  
John D. Baker ◽  
...  
2021 ◽  
Author(s):  
Jack Kaye ◽  
Malcolm Davidson

<p>The NASA/ESA Joint Program Planning Group (JPPG) subgroup on satellite calibration/validation was created to facilitate coordinated efforts between ESA, NASA, and their respective investigator communities to enhance calibration and/or validation activities for current and/or future satellite missions. The cooperation enabled through this activity includes airborne campaigns, use of surface-based measurements, and satellite-to-satellite intercomparisons. Numerous examples of such activities exist over the ten years of the JPPG. In this talk, examples of calibration/validation focused activities, accomplishments, and future plans will be presented. A particular focus will be on how the COVID-19 pandemic has affected field work planned for 2020 and 2021.  The JPPG subgroup also includes joint European-US studies of satellite results that integrate the results of both parties’ observational capabilities, and the status of those activities will be presented as well.</p>


2021 ◽  
Author(s):  
Alexander Cede ◽  
Martin Tiefengraber ◽  
Manuel Gebetsberger ◽  
Michel Van Roozendael ◽  
Henk Eskes ◽  
...  

<p>The worldwide operating Pandonia Global Network (PGN) is measuring atmospheric trace gases at high temporal resolution with the purpose of air quality monitoring and satellite validation. It is an activity carried out jointly by NASA and ESA as part of their “Joint Program Planning Group Subgroup” on calibration and validation and field activities, with additional collaboration from other institutions, most notably a strongly growing participation of the US Environmental Protection Agency (EPA). The more than 50 official PGN instruments are homogeneously calibrated and their data are centrally processed in real-time. Since 2019, total NO2 column amounts from the PGN are uploaded daily to the ESA Atmospheric Validation Data Centre (EVDC), where they are used for operational validation of Sentinel 5P (S5P) retrievals. During 2020, a new processor version 1.8 has been developed, which produces improved total NO2 column amounts and also the following new PGN products: total columns of O3, SO2 and HCHO based on direct sun observations and tropospheric columns, surface concentrations and tropospheric profiles of NO2 and HCHO based on sky observations. In this presentation we show some first examples of comparisons of the new PGN products with S5P data. Compared to the total NO2 columns from the previous processor version 1.7, the 1.8 data use better estimations for the effective NO2 temperature and the air mass factor. The effect of this improvement on the comparison with S5P retrievals is shown for some remote and high-altitude PGN sites. The new PGN total O3 column algorithm also retrieves the effective O3 temperature, which is a rather unique feature for ground-based direct sun retrievals. This allows us to analyze whether potential differences to satellite O3 columns might be influenced by the O3 temperature. Including the O3 temperature in the spectral fitting has also allowed the retrieval of accurate total SO2 columns. This PGN data product is of particular interest for satellite validation, as ground-based total SO2 column amounts are hardly measured by other instrumentation. An initial comparison of the PGN SO2 columns with S5P retrievals at selected PGN sites around the world is shown. PGN total HCHO columns from direct sun measurements are now possible for those PGN instruments, where the hardware parts made of Delrin, which outgasses HCHO, have been replaced by Nylon pieces. An initial comparison to HCHO retrievals from S5P is shown for locations with these upgraded instruments. Another new feature in the 1.8 PGN data is that they come with comprehensive uncertainty estimations, separated in the output files as independent, structured, common and total uncertainty.</p>


2021 ◽  
Author(s):  
Roberto Sabia ◽  
Sebastien Guimbard ◽  
Nicolas Reul ◽  
Tony Lee ◽  
Julian Schanze ◽  
...  

<p>The Pilot Mission Exploitation Platform (Pi-MEP) for Salinity (www.salinity-pimep.org) has been released operationally in 2019 to the broad oceanographic community, in order to foster satellite sea surface salinity validation and exploitation activities.</p><p>Specifically, the Platform aims at enhancing salinityvalidation, by allowing systematic inter-comparison of various EO datasets with a broad suite of in-situ data, and also at enabling oceanographic process studies by capitalizing on salinity data in synergy with additional spaceborne estimates.</p><p> </p><p>Despite Pi-MEP was originally conceived as an ESA initiative to widen the uptake of the Soil Moisture and Ocean Salinity (SMOS) mission data over ocean, a project partnership with NASA was devised soon after the operational deployment, and an official collaboration endorsed within the ESA-NASA Joint Program Planning Group (JPPG).</p><p> </p><p>The Salinity Pi-MEP has therefore become a reference hub for SMOS, SMAP and Aquarius satellite salinity missions, which are assessed in synergy with additional thematic datasets (e.g., precipitation, evaporation, currents, sea level anomalies, ocean color, sea surface temperature). </p><p>Match-up databases of satellite/in situ (such as Argo, TSG, moorings, drifters) data and corresponding validation reports at different spatiotemporal scales are systematically generated; furthermore, recently-developed dedicated tools allow data visualization, metrics computation and user-driven features extractions.</p><p> </p><p>The Platform is also meant to monitor salinity in selected oceanographic “case studies”, ranging from river plumes monitoring to SSS characterization in challenging regions, such as high latitudes or semi-enclosed basins.</p><p> </p><p>The two Agencies are currently collaborating to widen the Platform features on several technical aspects - ranging from a triple-collocation software implementation to a sustained exploitation of data from the SPURS-1/2 campaigns. In this context, an upgrade of the satellite/in-situ match-up methodology has been recently agreed, resulting into a redefinition of the validation criteria that will be subsequently implemented in the Platform.</p><p> </p><p>A further synthesis of the three satellites salinity algorithms, models and auxiliary data handling is at the core of the ESA Climate Change Initiative (CCI) on Salinity and of ESA-NASA further collaboration.</p>


2020 ◽  
Author(s):  
Alexander Cede ◽  
Martin Tiefengraber ◽  
Angelika Dehn ◽  
Barry Lefer ◽  
Jonas von Bismarck ◽  
...  

<p>The Pandonia Global Network (PGN) is a worldwide operating network of passive remote sensing spectrometer systems named “Pandora”. PGN is measuring atmospheric trace gases at high temporal resolution with the purpose of air quality monitoring and satellite validation. PGN is an activity carried out jointly by NASA, through the Pandora project at Goddard Space Flight Center, and ESA, through the Austrian contractor LuftBlick, as part of their Joint Program Planning Group Subgroup on calibration and validation and field activities. Many of the more than 50 actual PGN instruments are directly owned by NASA or ESA, another part belongs to other collaborating governmental and academic institutions. A major objective of the PGN is to support the validation and verification of more than a dozen low-earth orbit and geostationary orbit based UV-visible sensors, most notably Sentinel 5P, TEMPO, GEMS and Sentinel 4. PGN instruments are homogeneously calibrated and their data are centrally processed in real-time. Starting in June 2019, the PGN team has made more and more network locations “official PGN sites”, which means all required technical and logistical steps for this purpose have been performed. At the end of 2019 there are 18 such official network sites, where quality assured data are uploaded daily to EVDC (ESA Atmospheric Validation Data Centre), where they are used for operational validation of Sentinel 5P retrievals (see e.g. http://mpc-vdaf-server.tropomi.eu/no2/no2-offl-pandora). The current official PGN data products are total vertical column amounts of NO2 and O3 from direct sun observations. Research data products include total vertical columns amounts of SO2 and HCHO from direct sun observations as well as surface concentrations, tropospheric columns amounts, and vertical profiles for NO2 and HCHO from sky observations. These named research products are planned to become official over the course of the year 2020.</p>


1962 ◽  
Vol 14 ◽  
pp. 441-444 ◽  
Author(s):  
J. E. Geake ◽  
H. Lipson ◽  
M. D. Lumb

Work has recently begun in the Physics Department of the Manchester College of Science and Technology on an attempt to simulate lunar luminescence in the laboratory. This programme is running parallel with that of our colleagues in the Manchester University Astronomy Department, who are making observations of the luminescent spectrum of the Moon itself. Our instruments are as yet only partly completed, but we will describe briefly what they are to consist of, in the hope that we may benefit from the comments of others in the same field, and arrange to co-ordinate our work with theirs.


Sign in / Sign up

Export Citation Format

Share Document