Fluid-Structure Interactions in a Tube Bundle Subject to Cross-Flow. Part B : Two-Phase Flow Modeling

Author(s):  
Eliott R. Tixier ◽  
Cédric R. Béguin ◽  
Stephane Etienne ◽  
Dominique Pelletier ◽  
Alexander Hay ◽  
...  
1997 ◽  
Vol 119 (3) ◽  
pp. 457-463 ◽  
Author(s):  
H. Y. Lian ◽  
G. Noghrehkar ◽  
A. M. C. Chan ◽  
M. Kawaji

The effects of local two-phase flow parameters on the vibrational behavior of tubes have been studied in an in-line 5 × 20 tube bundle subjected to air-water cross-flow. One of the tubes was flexibly mounted and instrumented for vibration measurement and the others were rigid. Parameters obtained include local void fraction fluctuations, RMS amplitude of void fraction fluctuations, void fraction distributions across the tube bundle, flow regimes based on probability density function of void fraction signals, damping ratio, and tube vibration response as a function of mass flux, void fraction and dynamic pressure. Damping and tube vibration amplitude in two-phase flow have been found to be closely related to the RMS amplitudes of the local void fraction fluctuations and dynamic pressure fluctuations, respectively.


Author(s):  
G. Ricciardi ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.


1995 ◽  
Vol 117 (4) ◽  
pp. 321-329 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor ◽  
J. H. Jong ◽  
I. G. Currie

Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.


Author(s):  
Laurent Borsoi ◽  
Philippe Piteau ◽  
Xavier Delaune ◽  
Jose Antunes

Flow-induced vibration of heat-exchangers tubes is particularly studied in the nuclear industry for safety and cost reasons. It implies to have, among others, relevant characterizations of the random buffeting forces the cross-flow applies to the tube bundle. Work is still needed in this domain, particularly for two-phase flow, to improve the available data as the ones for PWR steam generator, currently very envelope. In parallel to get new experimental data, using “real” or substitutional mixtures (e.g. air-water instead of steam-water for PWR), it is essential to understand the basic excitation mechanisms which induce the vibrations under two-phase flow, as e.g. the influence of flow regimes. In this general framework, what can be learnt from deliberately simple models may be a contributive help. As a first attempt on this issue, the paper deals with the elementary case of a single rigid tube under air-water cross flow. This case is part of experiments carried out at CEA-Saclay with bundles where both tube support reactions and flow characteristics are measured, with respectively piezo-electrical sensors and bi-optical probes (BOP). The information provided by the BOP (mean interface velocity, statistical distribution, etc.) feeds a primitive model of water “droplet” impulses on the tube, based on a lot of crude assumptions about impact velocity, momentum conservation, impulse shape, statistical independence, etc., and which uses analytical results of random processes constructed from the superposition of random pulses. The “equivalent” excitation force, obtained in terms of dimensional PSD, is compared to the one measured in the drag and lift direction with an acceptable agreement, at least in order of magnitude. Comments and lessons are drawn from this first attempt, and some paths are advanced to improve this kind of primitive models, especially for treating rigid square bundles under air-water cross flow.


Author(s):  
Eliott Tixier ◽  
Cédric Béguin ◽  
Stephane Etienne ◽  
Dominique Pelletier ◽  
Alexander Hay ◽  
...  

1994 ◽  
Vol 8 (1-4) ◽  
pp. 1-67 ◽  
Author(s):  
Graham B. Wallis ◽  
Donald A. Drew

Sign in / Sign up

Export Citation Format

Share Document