Local Two-Phase Flow Measurements in a Cross-Flow Steam-Generator Tube Bundle Geometry : The Minnie II XF Program

1995 ◽  
pp. 613-618 ◽  
Author(s):  
J.F. Haquet ◽  
J.M. Gouirand
2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Téguewindé Sawadogo ◽  
Njuki Mureithi

Having previously verified the quasi-steady model under two-phase flow laboratory conditions, the present work investigates the feasibility of practical application of the model to a prototypical steam generator (SG) tube subjected to a nonuniform two-phase flow. The SG tube vibration response and normal work-rate induced by tube-support interaction are computed for a range of flow conditions. Similar computations are performed using the Connors model as a reference case. In the quasi-steady model, the fluid forces are expressed in terms of the quasi-static drag and lift force coefficients and their derivatives. These forces have been measured in two-phase flow over a wide range of void fractions making it possible to model the effect of void fraction variation along the tube span. A full steam generator tube subjected to a nonuniform two-phase flow was considered in the simulations. The nonuniform flow distribution corresponds to that along a prototypical steam-generator tube based on thermal-hydraulic computations. Computation results show significant and important differences between the Connors model and the two-phase flow based quasi-steady model. While both models predict the occurrence of fluidelastic instability, the predicted pre-instability and post instability behavior is very different in the two models. The Connors model underestimates the flow-induced negative damping in the pre-instability regime and vastly overestimates it in the post instability velocity range. As a result the Connors model is found to underestimate the work-rate used in the fretting wear assessment at normal operating velocities, rendering the model potentially nonconservative under these practically important conditions. Above the critical velocity, this model largely overestimates the work-rate. The quasi-steady model on the other hand predicts a more moderately increasing work-rate with the flow velocity. The work-rates predicted by the model are found to be within the range of experimental results, giving further confidence to the predictive ability of the model. Finally, the two-phase flow based quasi-steady model shows that fluidelastic forces may reduce the effective tube damping in the pre-instability regime, leading to higher than expected work-rates at prototypical operating velocities.


1997 ◽  
Vol 119 (3) ◽  
pp. 457-463 ◽  
Author(s):  
H. Y. Lian ◽  
G. Noghrehkar ◽  
A. M. C. Chan ◽  
M. Kawaji

The effects of local two-phase flow parameters on the vibrational behavior of tubes have been studied in an in-line 5 × 20 tube bundle subjected to air-water cross-flow. One of the tubes was flexibly mounted and instrumented for vibration measurement and the others were rigid. Parameters obtained include local void fraction fluctuations, RMS amplitude of void fraction fluctuations, void fraction distributions across the tube bundle, flow regimes based on probability density function of void fraction signals, damping ratio, and tube vibration response as a function of mass flux, void fraction and dynamic pressure. Damping and tube vibration amplitude in two-phase flow have been found to be closely related to the RMS amplitudes of the local void fraction fluctuations and dynamic pressure fluctuations, respectively.


Author(s):  
H. Senez ◽  
N. W. Mureithi ◽  
M. J. Pettigrew

Two-phase cross flow exists in many shell-and-tube heat exchangers. Flow-induced vibration excitation forces can cause tube motion that will result in long-term fretting wear or fatigue. Detailed flow and vibration excitation force measurements in tube bundles subjected to two-phase cross flow are required to understand the underlying vibration excitation mechanisms. Studies on this subject have already been done, providing results on flow regimes, fluidelastic instabilities, and turbulence-induced vibration. The spectrum of turbulence-induced forces has usually been expected to be similar to that in single-phase flow. However, a recent study, using tubes with a diameter larger than that in a real steam generator, showed the existence of significant quasi-periodic forces in two-phase flow. An experimental program was undertaken with a rotated-triangular array of cylinders subjected to air-water cross-flow, to simulate two-phase mixtures. The tube bundle here has the same geometry as that of a real steam generator. The quasi-periodic forces have now also been observed in this tube bundle. The present work aims to understand turbulence-induced forces acting on the tube bundle, providing results on drag and lift force spectra and their behaviour according to flow parameters, and describing their correlations. Detailed experimental test results are presented in this paper. Comparison is also made with previous measurements with larger diameter tubes. The present results suggest that quasi-periodic fluid forces are not uncommon in tube arrays subjected to two-phase cross-flow.


Author(s):  
G. Ricciardi ◽  
M. J. Pettigrew ◽  
N. W. Mureithi

Two-phase flow in power plant steam generators can induce tube vibrations, which may cause fretting-wear and even fatigue cracks. It is therefore important to understand the relevant two-phase flow-induced vibration mechanisms. Fluidelastic instabilities in cross-flow are known to cause the most severe vibration response in the U-bend region of steam generators. This paper presents test results of the vibration of a normal triangular tube bundle subjected to air-water cross-flow. The test section presents 31 flexible tubes. The pitch-to-diameter ratio of the bundle is 1.5, and the tube diameter is 38 mm. Tubes were flexible in the lift direction. Seven tubes were instrumented with strain gauges to measure their displacements. A broad range of void fractions (from 10% to 90%) and fluid velocities (up to 13 m/s) were tested. Fluidelastic instabilities were observed for void fractions between 10% and 60%. Periodic fluid forces were also observed. The results are compared with those obtained with the rotated triangular tube bundle, showing that the normal triangular configuration is more stable than the rotated triangular configuration.


Author(s):  
In-Cheol Chu ◽  
Heung June Chung ◽  
Chang Hee Lee ◽  
Hyung Hyun Byun ◽  
Moo Yong Kim

In the present study, a series of experiments have been performed to investigate a fluid-elastic instability of a nuclear steam generator U-tube bundle in an air-water two-phase flow condition. A total of 39 U-tubes are arranged in a rotated square array with a pitch-to-diameter ratio of 1.633. The diameter and other geometrical parameters of U-bend region are the same to those of an actual steam generator, but the vertical length of U-tubes are reduced to 2-span in contrast to 9-span of an actual steam generator. The following parameters were experimentally measured to evaluate a fluid-elastic instability of U-tube bundles in a two-phase flow: a general tube vibration response, a critical gap velocity, a damping ratio and a hydrodynamic mass. Based on the experimental measurements, the instability factor, K, of Connors’ relation was preliminary assessed with some assumptions on the velocity and density profiles of the two-phase flow.


1995 ◽  
Vol 117 (4) ◽  
pp. 321-329 ◽  
Author(s):  
M. J. Pettigrew ◽  
C. E. Taylor ◽  
J. H. Jong ◽  
I. G. Currie

Two-phase cross-flow exists in many shell-and-tube heat exchangers. The U-bend region of nuclear steam generators is a prime example. Testing in two-phase flow simulated by air-water provides useful results inexpensively. However, two-phase flow parameters, in particular surface tension and density ratio, are considerably different in air-water than in steam-water. A reasonable compromise is testing in liquid-vapor Freon, which is much closer to steam-water while much simpler experimentally. This paper presents the first results of a series of tests on the vibration behavior of tube bundles subjected to two-phase Freon cross-flow. A rotated triangular tube bundle of tube-to-diameter ratio of 1.5 was tested over a broad range of void fractions and mass fluxes. Fluidelastic instability, random turbulence excitation, and damping were investigated. Well-defined fluidelastic instabilities were observed in continuous two-phase flow regimes. However, intermittent two-phase flow regimes had a dramatic effect on fluidelastic instability. Generally, random turbulence excitation forces are much lower in Freon than in air-water. Damping is very dependent on void fraction, as expected.


Author(s):  
Laurent Borsoi ◽  
Philippe Piteau ◽  
Xavier Delaune ◽  
Jose Antunes

Flow-induced vibration of heat-exchangers tubes is particularly studied in the nuclear industry for safety and cost reasons. It implies to have, among others, relevant characterizations of the random buffeting forces the cross-flow applies to the tube bundle. Work is still needed in this domain, particularly for two-phase flow, to improve the available data as the ones for PWR steam generator, currently very envelope. In parallel to get new experimental data, using “real” or substitutional mixtures (e.g. air-water instead of steam-water for PWR), it is essential to understand the basic excitation mechanisms which induce the vibrations under two-phase flow, as e.g. the influence of flow regimes. In this general framework, what can be learnt from deliberately simple models may be a contributive help. As a first attempt on this issue, the paper deals with the elementary case of a single rigid tube under air-water cross flow. This case is part of experiments carried out at CEA-Saclay with bundles where both tube support reactions and flow characteristics are measured, with respectively piezo-electrical sensors and bi-optical probes (BOP). The information provided by the BOP (mean interface velocity, statistical distribution, etc.) feeds a primitive model of water “droplet” impulses on the tube, based on a lot of crude assumptions about impact velocity, momentum conservation, impulse shape, statistical independence, etc., and which uses analytical results of random processes constructed from the superposition of random pulses. The “equivalent” excitation force, obtained in terms of dimensional PSD, is compared to the one measured in the drag and lift direction with an acceptable agreement, at least in order of magnitude. Comments and lessons are drawn from this first attempt, and some paths are advanced to improve this kind of primitive models, especially for treating rigid square bundles under air-water cross flow.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Ouajih Hamouda ◽  
David S. Weaver ◽  
Jovica Riznic

This paper presents the results of an experimental model study of the transient loading of steam generator tubes during a postulated main steam line break (MSLB) accident in a nuclear power plant. The problem involves complex transient two-phase flow dynamics and fluid-structural loading processes. A better understanding of this phenomenon will permit the development of improved design tools to ensure steam generator tube integrity. The pressure and temperature were measured upstream and downstream of a sectional model of a tube bundle in cross-flow, and the transient tube loads were directly measured using dynamic piezoelectric load cells. High-speed videos were taken to observe and better understand the flow phenomena causing the tube loading. The working fluid was R-134a and the tube bundle was a normal triangular array with a pitch ratio of 1.36. The flow through the bundle was choked for the majority of the transient. The transient tube loading is explained in terms of the associated fluid mechanics. An empirical model is developed that enables the prediction of the maximum tube loads once the pressure drop is known.


Author(s):  
Blazenka Maslovaric ◽  
Vladimir Stevanovic ◽  
Sanja Prica ◽  
Zoran Stosic

The tube rupture accident is one among the most risk-dominant events at the nuclear power plants. Several steam generator tube rupture accidents have occurred at the plants in the past. In this paper the Computational Multi-Fluid Dynamics (CMFD) investigation of the horizontal steam generator thermal-hydraulics during the tube rupture accident is performed. A guillotine of a steam generator U-tube is assumed with choked flow from the primary to the secondary side of the steam generator. Predicted are water and steam velocity fields, steam volume fraction distribution on the steam generator secondary (shell) side, as well as the swell level increase. Obtained multidimensional results are a support to the safety analyses of the steam generator tube rupture accident. Also, they serve as benchmark tests for an assessment of the applicability of one-dimensional horizontal steam generator models, developed by standard safety codes. Numerical simulation is performed with the multidimensional multi-fluid modelling approach. The two-phase flow around steam generator tubes in the bundle is modelled by the porous media approach. Interfacial mass, momentum and energy transfer is modelled with the closure laws, where some of them are specially developed for the conditions of the two-phase flow across tube bundles. The governing equations are solved with the SIMPLE type pressure-correction method that is derived for the conditions of multi-phase flow conditions.


Sign in / Sign up

Export Citation Format

Share Document