Design Analysis of the High-Speed Experimental Flight Test Vehicle HEXAFLY-International

Author(s):  
Nunzia Favaloro ◽  
Giuseppe Pezzella ◽  
Valerio Carandente ◽  
Roberto Scigliano ◽  
Marco Cicala ◽  
...  
Author(s):  
Sara Di Benedetto ◽  
Maria Pia Di Donato ◽  
Antonio Schettino ◽  
Roberto Scigliano ◽  
Francesco Nebula ◽  
...  

Author(s):  
Roberto Scigliano ◽  
Giuseppe Pezzella ◽  
Sara Di Benedetto ◽  
Marco Marini ◽  
Johan Steelant

Over the last years, innovative concepts of civil high-speed transportation vehicles were proposed. In this framework, the Hexafly-INT project intends to test in free-flight conditions an innovative gliding vehicle with several breakthrough technologies on-board. This approach will help to gradually increase the readiness level of a consistent number of technologies suitable for hypervelocity flying systems. The vehicle design, manufacturing, assembly and verification is the main driver and challenge in this project. The prime objectives of this free-flying high-speed cruise vehicle shall aim at a conceptual design demonstrating a high aerodynamic efficiency in combination with high internal volume; controlled level flight at a cruise Mach number of 7 to 8;an optimal use of advanced high-temperature materials and structures. Present research describes the aero-thermal design process of the Experimental Flight Test Vehicle, namely EFTV. The glider aeroshape design makes maximum use of databases, expertise, technologies and materials elaborated in previously European community co-funded projects LAPCAT I & II [1][2], ATLLAS I & II [3][4] and HEXAFLY [5]. The paper presents results for both CFD and Finite Element aero-thermal analysis, performed in the most critical phase of the experimental flight leading to the selection of materials for the different components and to a suitable Thermal Protection System.


Author(s):  
Roberto Scigliano ◽  
Valerio Carandente ◽  
Nunzia Favaloro ◽  
Salvatore Cardone ◽  
Johan Steelant

The Hexafly-INT project intends to test in free-flight conditions an innovative gliding vehicle with several breakthrough technologies on-board. This approach will create the basis to gradually increase the readiness level of a consistent number of technologies suitable for high-speed flying systems. This paper presents a Finite Element thermal analysis of the Experimental Flight Test Vehicle, combining information coming from the flight trajectory, the structural layout, the vehicle aerothermodynamics and the thermal behavior of the preliminarily selected materials in high temperature conditions. Numerical results show the thermal performances of the selected high temperature resistant materials in moderate enthalpy flow conditions and provide fundamental information on the thermal loads to be considered for structural analyses.


1995 ◽  
Author(s):  
T Saetmark ◽  
H Streifinger ◽  
J Kretschmer ◽  
G Moser

2017 ◽  
Vol 14 (1) ◽  
pp. 172988141667814 ◽  
Author(s):  
Chao Chen ◽  
Jiyang Zhang ◽  
Daibing Zhang ◽  
Lincheng Shen

Tilt-rotor unmanned aerial vehicles have attracted increasing attention due to their ability to perform vertical take-off and landing and their high-speed cruising abilities, thereby presenting broad application prospects. Considering portability and applications in tasks characterized by constrained or small scope areas, this article presents a compact tricopter configuration tilt-rotor unmanned aerial vehicle with full modes of flight from the rotor mode to the fixed-wing mode and vice versa. The unique multiple modes make the tilt-rotor unmanned aerial vehicle a multi-input multi-output, non-affine, multi-channel cross coupling, and nonlinear system. Considering these characteristics, a control allocation method is designed to make the controller adaptive to the full modes of flight. To reduce the cost, the accurate dynamic model of the tilt-rotor unmanned aerial vehicle is not obtained, so a full-mode flight strategy is designed in view of this situation. An autonomous flight test was conducted, and the results indicate the satisfactory performance of the control allocation method and flight strategy.


2014 ◽  
Vol 59 (4) ◽  
pp. 36-51 ◽  
Author(s):  
Navid Dadkhah ◽  
Bérénice Mettler

This paper describes the identification modeling and analysis of a miniature coaxial helicopter. The first part of the paper focuses on the development of the parameterized model with an emphasis on the coaxial rotor configuration. The model explicitly accounts for the dynamics of the lower rotor and uses an implicit lumped parameter model for the upper rotor and stabilizer bar. The parameterized model was identified using frequency domain system identification. The flight data collection experiments were performed in an indoor flight-test facility built around a commercial vision-based tracking system. The second part of the paper focuses on the verification of the model's accuracy, the consistency of the identified parameters, and the analysis of the flight dynamics. The accuracy was verified by comparing model-predicted responses with flight experimental responses. The identified parameters and model's physical consistency were examined using experiments in which specific aspects of the dynamics were isolated. For example, we used video images from a high-speed camera to verify the rotor and stabilizer bar time constants. Finally, the identified derivatives were verified based on first principles to demonstrate that the derivatives are physically meaningful.


Sign in / Sign up

Export Citation Format

Share Document