Four-Loop Feedback Control System with Integrator Design for Hypersonic Cruise Missile

Author(s):  
Hongyang Xu ◽  
Yunfeng Yu ◽  
Xiaowen Guo ◽  
Fan Wang
2020 ◽  
pp. 107754632095261
Author(s):  
Kashfull Orra ◽  
Sounak K Choudhury

The study presents model-based mechanism of nonlinear cutting tool vibration in turning process and the strategy of improving cutting process stability by suppressing machine tool vibration. The approach used is based on the closed-loop feedback control system with the help of electro–magneto–rheological damper. A machine tool vibration signal generated by an accelerometer is fed back to the coil of a damper after suitable amplification. The damper, attached under the tool holder, generates counter forces to suppress the vibration after being excited by the signal in terms of current. The study also discusses the use of transfer function approach for the development of a mathematical model and adaptively controlling the process dynamics of the turning process. The purpose of developing such mechanism is to stabilize the machining process with respect to the dynamic uncut chip thickness responsible for the type-II regenerative effect. The state-space model used in this study successfully checked the adequacy of the model through controllability and observability matrices. The eigenvalue and eigenvector have confirmed the stability of the system more accurately. The characteristic of the stability lobe chart is discussed for the present model-based mechanism.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1103 ◽  
Author(s):  
Yao Mao ◽  
Jiuqiang Deng ◽  
Xi Zhou ◽  
Wei Ren

In the optical telescope, the stable precision of the optical path is affected by the structural vibrations. The image sensor with time delay and the micro electro-mechanical system (MEMS) accelerometer with massive drift limit the disturbance suppression performance of the closed loops. The current control methods cannot reject sufficiently vibrations due to the deficiency of the sensors, causality, and stability restrictions. In this study, the frequency-domain fusion virtual multi-loop feedback control system with measured disturbance feedforward method is proposed to suppress more structural vibrations. In spite of the deficiency of the sensors, we propose the frequency-domain fusion virtual gyroscopes (VGYR) to measure extra velocity of the system. The VGYR is estimated from the MEMS accelerometer with drift and corrected by the image sensor, and it replaces the fiber-optical gyroscopes (FOG) on the fast-stable platform because the weight of FOG is not negligible. To suppress more vibrations, the VGYR and the replaced FOG are utilized to build the virtual multi-loop feedback control system with measured disturbance feedforward, because it is not limited by the causality and stability restrictions. Therefore, the proposed method with causal ideal compensator can effectively improve stable precision and suppress much more structural vibrations in the wider frequency range. Detailed comparative experimental results adequately illustrate the advantages and effectiveness of this method.


2021 ◽  
Vol 165 ◽  
pp. 112218
Author(s):  
Rohit Kumar ◽  
Pramila Gautam ◽  
Shivam Gupta ◽  
R.L. Tanna ◽  
Praveenlal Edappala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document