Cold Start-Up and Plasma-Based Flameholding in Model Scramjet

Author(s):  
Alec Houpt ◽  
Skye Elliott ◽  
Sergey B. Leonov
Keyword(s):  
Author(s):  
Gianluca Valenti ◽  
Stefano Murgia ◽  
Ida Costanzo ◽  
Antonino Ravidà ◽  
Giovanni Pio Piscopiello

Author(s):  
Dennis Toebben ◽  
Tobias Burgard ◽  
Sebastian Berg ◽  
Manfred Wirsum ◽  
Liu Pei ◽  
...  

Abstract Combined cycle power plants (CCPP) have many advantages compared to other fossil power plants: high efficiency, flexible operation, compact design, high potential for combined heat and power (CHP) applications and fewer emissions. However, fuel costs are relatively high compared to coal. Nevertheless, major qualities such as high operation flexibility and low emissions distinctly increase in relevance in the future, due to rising power generation from renewable energy sources. An accelerated start-up procedure of CCPPs increases the flexibility and reduces the NOx-emissions, which are relatively high in gas turbine low load operation. Such low load operation is required during a cold start of a CCPP in order to heat up the steam turbine. Thus, a warm-keeping of the thermal-limiting steam turbine results in an accelerated start-up times as well as reduced NOx-emissions and lifetime consumption. This paper presents a theoretical analysis of the potential of steam turbine warm-keeping by means of hot air for a typical CCPP, located in China. In this method, the hot air passes through the steam turbine while the power plant is shut off which enables hot start conditions at any time. In order to investigate an improved start-up procedure, a physical based simplified model of the water-steam cycle is developed on the basis of an operation data set. This model is used to simulate an improved power plant start-up, in which the steam turbine remains hot after at least 120 hours outage. The results show a start-up time reduction of approximately two-thirds in comparison to a conventional cold start. Furthermore, the potential of steam turbine warm-keeping is discussed with regards to the power output, NOx-emissions, start-up costs and lifetime consumption.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4456
Author(s):  
Wei Jiang ◽  
Ke Song ◽  
Bailin Zheng ◽  
Yongchuan Xu ◽  
Ruoshi Fang

In order to realize the low temperature and rapid cold start-up of a proton exchange membrane fuel cell stack, a dynamic model containing 40 single proton exchange membrane fuel cells is established to estimate the melting time of the proton exchange membrane fuel cell stack as well as to analyze the melting process of the ice by using the obtained liquid–solid boundary. The methods of proton exchange membrane electric heating and electrothermal film heating are utilized to achieve cold start-up of the proton exchange membrane fuel cell (PEMFC). The fluid simulation software fluent is used to simulate and analyze the process of melting ice. The solidification and melting model and multi-phase flow model are introduced. The pressure-implicit with splitting of operators algorithm is also adopted. The results show that both the proton exchange membrane electric heating technology and the electrothermal film heating method can achieve rapid cold start-up. The interior ice of the proton exchange membrane fuel cell stack melts first, while the first and 40th pieces melt afterwards. The ice melting time of the proton exchange membrane fuel cell stack is 32.5 s and 36.5 s with the two methods, respectively. In the end, the effect of different electrothermal film structures on cold start-up performance is studied, and three types of pore diameter electrothermal films are established. It is found that the electrothermal film with small holes melts completely first, and the electrothermal film with large holes melts completely last.


Sign in / Sign up

Export Citation Format

Share Document