High Fidelity Digital Cabin Mock-Up based on Preliminary Aircraft Design Data for Virtual Reality Applications and Beyond

2021 ◽  
Author(s):  
Jan-Niclas Walther ◽  
Christian Hesse ◽  
Jörn Biedermann ◽  
Björn Nagel
Author(s):  
Jan-Niclas Walther ◽  
Bahadir Kocacan ◽  
Christian Hesse ◽  
Alex Gindorf ◽  
Björn Nagel

AbstractPreliminary aircraft design and cabin design are essential and well-established steps within the product development cycle for modern passenger aircraft. In practice, the execution usually takes place sequentially, with the preliminary design defining a basic cabin layout and the detail implementation following in a subsequent step. To enable higher fidelity assessment of the cabin early in the design process—for example by means of virtual reality applications—this paper proposes an interface, which can derive detailed 3D geometry of the fuselage from preliminary design data provided in the Common Parametric Aircraft Configuration Schema (CPACS). This is a key step towards integration of cabin analysis and preliminary design in automated collaborative aircraft design chains, not only in terms of passenger comfort, but also manufacturability or crash safety. Like the TiGL Geometry Library for CPACS, the interface presented acts as a parameter engine, which translates data from CPACS into CAD geometry using the Open Cascade Technology library. However, the scope of TiGL is expanded significantly, albeit with an explicit focus on the fuselage, by including more details such as extruded frame and stringer profiles and floor structures. Furthermore, advanced knowledge management techniques are employed to detect and augment missing data. For virtual reality applications, triangulated representations of the CAD geometry can be provided in established exchange formats, creating an interface to common visualization platforms. Additionally, a new evolution of the cabin definition schema in CPACS is presented, to incorporate models of cabin components such as seats or sidewall panels enabling immersive virtual mock-ups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Peter E. Wais ◽  
Melissa Arioli ◽  
Roger Anguera-Singla ◽  
Adam Gazzaley

AbstractTherapeutic interventions have not yet been shown to demonstrate restorative effects for declining long-term memory (LTM) that affects many healthy older adults. We developed a virtual reality (VR) spatial wayfinding game (Labyrinth-VR) as a cognitive intervention with the hypothesis that it could improve detailed, high-fidelity LTM capability. Spatial navigation tasks have been used as a means to achieve environmental enrichment via exposure to and learning about novel and complex information. Engagement has been shown to enhance learning and has been linked to the vitality of the LTM system in the brain. In the current study, 48 older adults (mean age 68.7 ± 6.4 years) with average cognitive abilities for their age were randomly assigned to 12 h of computer game play over four weeks in either the Labyrinth-VR or placebo control game arms. Promptly before and after each participant’s treatment regimen, high-fidelity LTM outcome measures were tested to assess mnemonic discrimination and other memory measures. The results showed a post-treatment gain in high-fidelity LTM capability for the Labyrinth-VR arm, relative to placebo, which reached the levels attained by younger adults in another experiment. This novel finding demonstrates generalization of benefits from the VR wayfinding game to important, and untrained, LTM capabilities. These cognitive results are discussed in the light of relevant research for hippocampal-dependent memory functions.


2011 ◽  
Vol 115 (1170) ◽  
pp. 453-470 ◽  
Author(s):  
L. Lu ◽  
G. D. Padfield ◽  
M. White ◽  
P. Perfect

AbstractHigh fidelity modelling and simulation are prerequisites for ensuring confidence in decision making during aircraft design and development, including performance and handling qualities, control law developments, aircraft dynamic loads analysis, and the creation of a realistic simulation environment. The techniques of system identification provide a systematic framework for ‘enhancing’ a physics–based simulation model derived from first principles and aircraft design data. In this paper we adopt a frequency domain approach for model enhancement and fidelity improvement of a baseline FLIGHTLAB Bell 412 helicopter model developed at the University of Liverpool. Predictability tests are based on responses to multi–step control inputs. The techniques have been used to generate one, three, and six degree-of-freedom linear models, and their derivatives and predictability are compared to evaluate and augment the fidelity of the FLIGHTLAB model. The enhancement process thus involves augmenting the simulation model based on the identified parameters. The results are reported within the context of the rotorcraft simulation fidelity project, Lifting Standards, involving collaboration with the Flight Research Laboratory (NRC, Ottawa), supported with flight testing on the ASRA research helicopter.


2019 ◽  
Vol 56 (3) ◽  
pp. 1259-1263 ◽  
Author(s):  
Francesca Tomasella ◽  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino

2011 ◽  
Vol 2 (1-4) ◽  
pp. 57-68 ◽  
Author(s):  
Carsten M. Liersch ◽  
Martin Hepperle

2009 ◽  
Vol 24 (2) ◽  
pp. 366-370 ◽  
Author(s):  
Irina Kruglikova ◽  
Teodor P. Grantcharov ◽  
Asbjorn M. Drewes ◽  
Peter Funch-Jensen

Sign in / Sign up

Export Citation Format

Share Document