Development and Integration of a Thermal Management Simulation for a Quadrotor Parallel Hybrid Propulsion System

Author(s):  
Jeffryes W. Chapman ◽  
George L. Thomas
Aerospace ◽  
2019 ◽  
Vol 6 (7) ◽  
pp. 77 ◽  
Author(s):  
Luca Boggero ◽  
Sabrina Corpino ◽  
Andrea De Martin ◽  
Giuseppe Evangelista ◽  
Marco Fioriti ◽  
...  

The article proposes the design of a test bench simulator to test a parallel hybrid propulsion architecture for aeronautical applications. The virtual test bench simulates, in a scaled version, the real test bench, designed for a power of about 0.4 MW. After presenting the architecture of the real propulsion system, the virtual test bench is described. The real system is basically composed by a paralleled electric motor and thermal engine which provide mechanical power to the propeller. Saving cost and volume the test bench is composed by electric motors simulates the behaviors of the real propulsion system despite their differences. The dynamic relationships expressing the transmission of torque between the components, and the method of down-sizing the power delivered are highlighted. Particular attention is given to the real inertia actions that must be simulated on the virtual test bench. An application of the proposed methodology is then presented through the simulation of the take-off phase, and the torque time histories, angular velocities and powers generated on the virtual test bench are used to verify the corresponding time histories expected in the real system.


2019 ◽  
Vol 92 (5) ◽  
pp. 727-736
Author(s):  
Leonardo Machado ◽  
Jay Matlock ◽  
Afzal Suleman

Purpose This paper aims to experimentally evaluate the performance of a parallel hybrid propulsion system for use in small unmanned aerial vehicles (UAVs). Design/methodology/approach The objective is to combine all the individual components of the hybrid electric propulsion system (HEPS) into a modular test bench to characterize the performance of a parallel hybrid propulsion system, and to evaluate a rule-based controller based on the ideal operating line concept for the control of the power plant. Electric motor (EM) designed to supplement the power of the internal combustion engine (ICE) to reduce the overall fuel consumption, with the supervisory controller optimizing ICE torque. Findings The EM was able to supplement the power of the ICE to reduce fuel consumption, and proved the capability of acting as a generator to recharge the batteries drawing from ICE power. Furthermore, the controller showed that it is possible to reduce the fuel consumption with a HEPS when compared to its gasoline counterpart by running simulated representative UAV missions. The findings also highlighted the challenges to build and integrate the HEPS in small UAVs. Originality/value The modularity of the test bench allows each component to be changed to assess its impact on the performance of the system. This allows for further exploration and improvements of the HEPS in a controlled environment.


2013 ◽  
Vol 20 (3) ◽  
pp. 20-27 ◽  
Author(s):  
Jakub Kowalski ◽  
Wojciech Leśniewski ◽  
Wojciech Litwin

Abstract In the Faculty of Ocean Engineering and Ship Technology, Gdansk University of Technology, design has recently been developed of a small inland ship with hybrid propulsion and supply system. The ship will be propelled by a specially designed so called parallel hybrid propulsion system. The work was aimed at carrying out the energy efficiency analysis of a hybrid propulsion system operating in the electric motor drive mode and at performing the noise pollution measurements. The performed investigations have shown that a significant impact on the efficiency and on the acoustic emission has the type of belt transmission applied.


2017 ◽  
Vol 24 (4) ◽  
pp. 77-84 ◽  
Author(s):  
Wojciech Litwin ◽  
Wojciech Leśniewski ◽  
Jakub Kowalski

Abstract The development and growing availability of modern technologies, along with more and more severe environment protection standards which frequently take a form of legal regulations, are the reason why attempts are made to find a quiet and economical propulsion system not only for newly built watercraft units, but also for modernised ones. Correct selection of the propulsion and supply system for a given vessel affects significantly not only the energy efficiency of the propulsions system but also the environment - as this selection is crucial for the noise and exhaust emission levels. The paper presents results of experimental examination of ship power demand performed on a historic passenger ship of 25 m in length. Two variants, referred to as serial and parallel hybrid propulsion systems, were examined with respect to the maximum length of the single-day route covered by the ship. The recorded power demands and environmental impact were compared with those characteristic for the already installed conventional propulsion system. Taking into account a high safety level expected to be ensured on a passenger ship, the serial hybrid system was based on two electric motors working in parallel and supplied from two separate sets of batteries. This solution ensures higher reliability, along with relatively high energy efficiency. The results of the performed examination have revealed that the serial propulsion system is the least harmful to the environment, but its investment cost is the highest. In this context, the optimum solution for the ship owner seems to be a parallel hybrid system of diesel-electric type


Mechatronics ◽  
2010 ◽  
Vol 20 (4) ◽  
pp. 464-473 ◽  
Author(s):  
P. Bajec ◽  
B. Pevec ◽  
D. Miljavec

Author(s):  
Noriko Morioka ◽  
Hitoshi Oyori ◽  
Naoki Seki ◽  
Tsuyoshi Fukuda ◽  
Fuminori Suzuki

The MEE (More Electric Engine) is a concept for engine system electrification and is an evolutionary step in engine system design that contributes to the reduction of aviation CO2 emissions. Mifee (Metering and integrated fuel feeding electrification) and the E3M (Engine Embedded Electric Machine) are the key technologies of the MEE. The purpose of engine thermal management is maintaining the balance between heat generation by the engine system and heat dissipation to the outside of the engine. In recent engine system designs, thermal system design has become an issue because of increased heat generation within the system. For example, a recently developed turbo-fan engine system increases the heat generation by introduction of a fan drive gear system that produces a large amount of heat in addition to the conventional heat source, such as engine main bearings and gears. The MEE will have further heat sources within its system, like the E3M, which is a high-power electric machine. In this paper, an investigation approach and the result of a feasibility study of the MEE thermal management system is described. In addition, the perspective of the technology trend from the MEE toward future hybrid propulsion is also discussed. The global requirements for climate protection strongly demand game-changing technology that significantly improves the aircraft’s overall efficiency. A series/parallel partial hybrid propulsion system, in which both a turbo-fan engine and electrical motor-driven fans generate propulsive power, is considered to be one of the most promising approaches for the future commercial aircraft hybrid propulsion system. The MEE and E3M technology evolves until it will be applied in hybrid propulsion system.


Sign in / Sign up

Export Citation Format

Share Document